• Ferguson, G. et al. Crustal Groundwater Volumes Greater Than Previously Thought. Geophys Res Lett. 48, e2021GL093549 (2021).

    Article 

    Google Scholar
     

  • Jasechko, S. et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, 715–721 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fan, Y., Li, H. & Miguez-Macho, G. Global Patterns of Groundwater Table Depth. Science 339, 940–943 (2013).

    Article 
    CAS 

    Google Scholar
     

  • de Graaf, I. E. M. et al. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Adv. Water Resour. 102, 53–67 (2017).

    Article 

    Google Scholar
     

  • Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).

    Article 

    Google Scholar
     

  • Condon, L. E. & Maxwell, R. M. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 5, eaav4574 (2019).

    Article 

    Google Scholar
     

  • Wada, Y. Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. Surv. Geophys 37, 419–451 (2016).

    Article 

    Google Scholar
     

  • Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res 48, W00L06 (2012).

    Article 

    Google Scholar
     

  • Condon, L. E. et al. Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resour. Res 57, e2020WR029500 (2021).

    Article 

    Google Scholar
     

  • Alley, W. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and Storage in Groundwater Systems. Science 296, 1985–1990 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Haitjema, H. M. & Mitchell-Bruker, S. Are Water Tables a Subdued Replica of the Topography? Groundwater 43, 781–786 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Eamus, D., Zolfaghar, S., Villalobos-Vega, R., Cleverly, J. & Huete, A. Groundwater-dependent ecosystems: recent insights from satellite and field-based studies. Hydrol. Earth Syst. Sci. 19, 4229–4256 (2015).

    Article 

    Google Scholar
     

  • Huntington, J. L. & Niswonger, R. G. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach. Water Resour. Res. 48 https://doi.org/10.1029/2012WR012319 (2012).

  • Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. 114, 10572 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl. Acad. Sci. (2018).

  • Cooley, D., Maxwell, R. M. & Smith, S. M. Center Pivot Irrigation Systems and Where to Find Them: A Deep Learning Approach to Provide Inputs to Hydrologic and Economic Models. Front. Water 3 (2021).

  • Long, D. et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens Environ. 192, 198–216 (2017).

    Article 

    Google Scholar
     

  • Rodell, M. et al. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 15, 159–166 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Scanlon, B. R. et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87–101 (2023).

    Article 

    Google Scholar
     

  • Castellazzi, P., Martel, R., Galloway, D. L., Longuevergne, L. & Rivera, A. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations. Groundwater 54, 768–780 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Naz, B. S., Sharples, W., Ma, Y., Goergen, K. & Kollet, S. Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe. Geosci. Model Dev. 16, 1617–1639 (2023).

    Article 

    Google Scholar
     

  • Refsgaard, J. C., Stisen, S. & Koch, J. Hydrological process knowledge in catchment modelling – Lessons and perspectives from 60 years development. Hydrol. Process 36, e14463 (2022).

    Article 

    Google Scholar
     

  • Gleeson, T. et al. GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geosci. Model Dev. 14, 7545–7571 (2021).

    Article 

    Google Scholar
     

  • Fan, Y. et al. Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resour. Res. 55, 1737–1772 (2019).

    Article 

    Google Scholar
     

  • Clark, M. P. et al. Improving the theoretical underpinnings of process-based hydrologic models. Water Resour. Res. 52, 2350–2365 (2016).

    Article 

    Google Scholar
     

  • Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res 54, 8558–8593 (2018).

    Article 

    Google Scholar
     

  • Ransom, K. M. et al. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Sci. Total Environ. 601-602, 1160–1172 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ransom, K. M., Nolan, B. T., Stackelberg, P. E., Belitz, K. & Fram, M. S. Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States. Sci. Total Environ. 807, 151065 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Y. et al. Water Table Depth Estimates over the Contiguous United States Using a Random Forest Model. Groundwater n/a https://doi.org/10.1111/gwat.13362 (2023).

  • Koch, J., Berger, H., Henriksen, H. J. & Sonnenborg, T. O. Modelling of the shallow water table at high spatial resolution using random forests. Hydrol. Earth Syst. Sci. 23, 4603–4619 (2019).

    Article 

    Google Scholar
     

  • Fan, Y., Miguez-Macho, G., Weaver, C. P., Walko, R. & Robock, A. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J. Geophys. Res.-Atmos. 112, – (2007).

  • Maxwell, R. M., Condon, L. E. & Kollet, S. J. A. high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev. 8, 1–15 (2015).

    Article 

    Google Scholar
     

  • Tijerina-Kreuzer, D. et al. Continental Scale Hydrostratigraphy: Basin-Scale Testing of Alternative Data-Driven Approaches. Groundwater n/a https://doi.org/10.1111/gwat.13357 (2023).

  • Ferguson, G. et al. Groundwater deeper than 500 m contributes less than 0.1% of global river discharge. Commun. Earth Environ. 4, 48 (2023).

    Article 

    Google Scholar
     

  • Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resour. Res 51, 5198–5216 (2015).

    Article 

    Google Scholar
     

  • Ferguson, G., McIntosh, J. C., Perrone, D. & Jasechko, S. Competition for shrinking window of low salinity groundwater. Environ. Res. Lett. 13, 114013 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jurgens, B. C. et al. Over a third of groundwater in USA public-supply aquifers is Anthropocene-age and susceptible to surface contamination. Commun. Earth Environ. 3, 153 (2022).

    Article 

    Google Scholar
     

  • Nace, R. L. Water Management, Agriculture, and Ground-Water Supplies. 12 (US Geological Survey, 1960).

  • Nace, R. L. in Introduction to Geographical Hydrology (ed R. J. Chorley) 31-47 (Methuen and Co., 1969).

  • Garmonov, I.V., Konoplyantsev, K. P. V., A.A., Lushnikova, N.P. in World Water Balance and Water Resources of the Earth (ed V. I. Korzun) Ch. 3.6, 50 (UNESCO Press, 1978).

  • Bonotto, G., Peterson, T. J., Fowler, K. & Western, A. W. Identifying Causal Interactions Between Groundwater and Streamflow Using Convergent Cross-Mapping. Water Resour. Res. 58, e2021WR030231 (2022).

    Article 

    Google Scholar
     

  • Fan, Y. Groundwater in the Earth’s critical zone: Relevance to large-scale patterns and processes. Water Resour. Res. 51, 3052–3069 (2015).

    Article 

    Google Scholar
     

  • Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    Article 
    CAS 

    Google Scholar
     

  • de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    Article 

    Google Scholar
     

  • Krakauer, N. Y., Li, H. & Fan, Y. Groundwater flow across spatial scales: importance for climate modeling. Environ. Res. Lett. 9, 034003 (2014).

    Article 

    Google Scholar
     

  • Macdonald, D., Dixon, A., Newell, A. & Hallaways, A. Groundwater flooding within an urbanised flood plain. J. Flood Risk Manag. 5, 68–80 (2012).

    Article 

    Google Scholar
     

  • Gorelick, S. M. & Zheng, C. Global change and the groundwater management challenge. Water Resour. Res. 51, 3031–3051 (2015).

    Article 

    Google Scholar
     

  • Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).

    Article 
    CAS 

    Google Scholar