• He, C. et al. Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. R. et al. A triple increase in global river basins with water scarcity due to future pollution. Nat. Commun. 15, 880 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. G. et al. Water scarcity assessments in the past, present, and future. Earth’s Future 5, 545–559 (2017).

    Article 

    Google Scholar
     

  • Schmidt-Traub, G., Kroll, C., Teksoz, K., Durand-Delacre, D. & Sachs, J. D. National baselines for the Sustainable Development Goals assessed in the SDG Index and dashboards. Nat. Geosci. 10, 547–555 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jones, E. R., Bierkens, M. F. P. & van Vliet, M. T. H. Current and future global water scarcity intensifies when accounting for surface water quality. Nat. Clim. Change 14, 629–635 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12, 1915 (2021).

    Article 

    Google Scholar
     

  • Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2, 15 (2019).

    Article 

    Google Scholar
     

  • Beltran-Peña, A. & D’Odorico, P. Future food security in Africa under climate change. Earth’s Future 10, e2022EF002651 (2022).

    Article 

    Google Scholar
     

  • Li, X. et al. Hydrological cycle in the Heihe River basin and its implication for water resource management in endorheic basins. J. Geophys. Res. Atmos. 123, 890–914 (2018).

    Article 

    Google Scholar
     

  • Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, X. Y., Yang, Y. H., Sheng, Z. P. & Zhang, Y. Q. Reconstructed natural runoff helps to quantify the relationship between upstream water use and downstream water scarcity in China’s river basins. Hydrol. Earth Syst. Sci. 23, 2491–2505 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Graham, N. T. et al. Humans drive future water scarcity changes across all Shared Socioeconomic Pathways. Environ. Res. Lett. 15, 014007 (2020).

    Article 

    Google Scholar
     

  • Cui, R. Y. et al. Regional responses to future, demand-driven water scarcity. Environ. Res. Lett. 13, 094006 (2018).

    Article 

    Google Scholar
     

  • Kriegler, E. et al. The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Global Environ. Change 22, 807–822 (2012).

    Article 

    Google Scholar
     

  • Bijl, D. L. et al. A global analysis of future water deficit based on different allocation mechanisms. Water Resour. Res. 54, 5803–5824 (2018).

    Article 

    Google Scholar
     

  • Jafarzadegan, K. et al. Recent advances and new frontiers in riverine and coastal flood modeling. Rev. Geophys. 61, e2022RG000788 (2023).

    Article 

    Google Scholar
     

  • Calvin, K. et al. GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cao, M. et al. Spatial sequential modeling and predication of global land use and land cover changes by integrating a global change assessment model and cellular automata. Earth’s Future 7, 1102–1116 (2019).

    Article 

    Google Scholar
     

  • Malik, A. et al. Implications of an emission trading scheme for India’s net-zero strategy: a modelling-based assessment. Environ. Res. Lett. 19, 084043 (2024).

    Article 

    Google Scholar
     

  • Guo, A. J. et al. Predicting the water rebound effect in China under the Shared Socioeconomic Pathways. Int. J. Environ. Res. Public Health 18, 1326 (2021).

    Article 

    Google Scholar
     

  • Hanasaki, N. et al. A global water scarcity assessment under Shared Socio-economic Pathways – part 1: water use. Hydrol. Earth Syst. Sci. 17, 2375–2391 (2013).

    Article 

    Google Scholar
     

  • Sun, S. et al. Unraveling the effect of inter-basin water transfer on reducing water scarcity and its inequality in China. Water Res. 194, 116931 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. Q., Zhang, L. X., Zhang, P. P., Li, X. Q. & Hao, Y. Water-energy-food nexus in China: an interregional comparison. Agric. Water Manage. 301, 108964 (2024).

    Article 

    Google Scholar
     

  • Neu, D. A., Lahann, J. & Fettke, P. A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev. 55, 801–827 (2022).

    Article 

    Google Scholar
     

  • Fleming, S. W. Demand modulation of water scarcity sensitivities to secular climatic variation: theoretical insights from a computational maquette. Hydrol. Sci. J. 61, 2849–2859 (2016).

    Article 

    Google Scholar
     

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change Human Policy Dimensions 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • Castro, M. C. et al. Examples of coupled human and environmental systems from the extractive industry and hydropower sector interfaces. Proc. Natl Acad. Sci. USA 113, 14528–14535 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Thacker, S. et al. Infrastructure for sustainable development. Nat. Sustain. 2, 324–331 (2019).

    Article 

    Google Scholar
     

  • Wang, H. et al. Dietary shift can enhance the environmental benefits of crop redistribution. Environ. Impact Assess. Rev. 106, 107494 (2024).

    Article 

    Google Scholar
     

  • Ansink, E. & Houba, H. Market power in water markets. J. Environ. Econ. Manage. 64, 237–252 (2012).

    Article 

    Google Scholar
     

  • Shi, J., Wu, J. J. & Olen, B. Impacts of climate and weather on irrigation technology adoption and agricultural water use in the US Pacific Northwest. Agric. Econ. 53, 387–406 (2022).

    Article 

    Google Scholar
     

  • Nyiwul, L. Demand for water innovation: evidence on wastewater technology adoption in thirteen African countries. Econ. Change Restruct. 56, 3383–3410 (2023).

    Article 

    Google Scholar
     

  • Gershman, S. J. What have we learned about artificial intelligence from studying the brain?. Biol. Cybern. 118, 1–5 (2024).

    Article 

    Google Scholar
     

  • Pincetl, S., Hogue, T. S. & Mini, C. Patterns and controlling factors of residential water use in Los Angeles, California. Water Policy 16, 1054–1069 (2014).

    Article 

    Google Scholar
     

  • Savelli, E., Mazzoleni, M., Di Baldassarre, G., Cloke, H. & Rusca, M. Urban water crises driven by elites’ unsustainable consumption. Nat. Sustainability 6, 929–940 (2023).

    Article 

    Google Scholar
     

  • Huang, J. J., Wu, W. Y., Maier, H. R., Wang, Q. J. & Hughes, J. A multi-objective optimization-based framework for extending reservoir service life in a changing world. J. Hydrol. 637, 131409 (2024).

    Article 

    Google Scholar
     

  • Chen, Z. H., Ki, D., Li, Z. K. & Wang, K. L. Assessing equity in infrastructure investment distribution among US cities. Cities 162, 105898 (2025).

    Article 

    Google Scholar
     

  • Mueller, J. T. & Gasteyer, S. The ethnically and racially uneven role of water infrastructure spending in rural economic development. Nat. Water 1, 74–82 (2023).

    Article 

    Google Scholar
     

  • Meehan, K., Jurjevich, J. R., Everitt, L., Chun, N. M. J. W. & Sherrill, J. Urban inequality, the housing crisis and deteriorating water access in US cities. Nat. Cities 2, 93–103 (2025).

    Article 

    Google Scholar
     

  • Brottrager, M., Crespo Cuaresma, J., Kniveton, D. & Ali, S. H. Natural resources modulate the nexus between environmental shocks and human mobility. Nat. Commun. 14, 1393 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M., Zhou, X., Huang, G. & Li, Y. The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically. Commun. Earth Environ. 5, 396 (2024).

    Article 

    Google Scholar
     

  • Liu, Y. Q., Zhu, J. L., Li, E. Y., Meng, Z. Y. & Song, Y. Environmental regulation, green technological innovation, and eco-efficiency: the case of Yangtze river economic belt in China. Technol. Forecasting Social Change 155, 119993 (2020).

    Article 

    Google Scholar
     

  • Pei, D. J. et al. Agricultural water rebound effect and its driving factors in Xinjiang, China. Agric. Water Manage. 304, 109086 (2024).

    Article 

    Google Scholar
     

  • Jaspers, D. & Proff, H. Strengthening capital-intensive companies in technology competition through innovation platforms. Eur. J. Innovation Manage. https://doi.org/10.1108/EJIM-01-2024-0050 (2025).

    Article 

    Google Scholar
     

  • Klemun, M. M., Ojanperä, S. & Schweikert, A. Toward evaluating the effect of technology choices on linkages between sustainable development goals. iScience 26, 105727 (2023).

    Article 

    Google Scholar
     

  • Lankford, B. A. Resolving the paradoxes of irrigation efficiency: irrigated systems accounting analyses depletion-based water conservation for reallocation. Agric. Water Manage. 287, 108437 (2023).

    Article 

    Google Scholar
     

  • Li, H. Y. & Zhao, J. H. Rebound effects of new irrigation technologies: the role of water rights. Am. J. Agric. Econ. 100, 786–808 (2018).

    Article 

    Google Scholar
     

  • Vermeire, J., Crucke, S., Mutesi, J. & Vinck, A. Tackling climate change under time-poverty: cooperatives as temporal pacers. Sustainable Dev. 31, 253–264 (2023).

    Article 

    Google Scholar
     

  • Graham, N. T. et al. Water sector assumptions for the Shared Socioeconomic Pathways in an integrated modeling framework. Water Resour. Res. 54, 6423–6440 (2018).

    Article 

    Google Scholar
     

  • Hejazi, M., Edmonds, J., Chaturvedi, V., Davies, E. & Eom, J. Scenarios of global municipal water-use demand projections over the 21st century. Hydrol. Sci. J. 58, 519–538 (2013).

    Article 

    Google Scholar
     

  • Almagro, A. et al. The drivers of hydrologic behavior in Brazil: insights from a catchment classification. Water Resour. Res. 60, e2024WR037212 (2024).

    Article 

    Google Scholar
     

  • Kimura, M. Generalized t-SNE through the lens of information geometry. IEEE Access 9, 129619–129625 (2021).

    Article 

    Google Scholar
     

  • Wu, S., Han, H., Hou, B. & Diao, K. Hybrid model for short-term water demand forecasting based on error correction using chaotic time series. Water 12, 1683 (2020).

    Article 

    Google Scholar
     

  • Seok, J.-H. et al. Abnormal data refinement and error percentage correction methods for effective short-term hourly water demand forecasting. Int. J. Control Autom. Syst. 12, 1245–1256 (2014).

    Article 

    Google Scholar
     

  • Bata, M. H., Carriveau, R. & Ting, D. S. K. Short-term water demand forecasting using nonlinear autoregressive artificial neural networks. J. Water Resour. Plan. Manage. 146, 04020008 (2020).

    Article 

    Google Scholar
     

  • Chen, J. & Boccelli, D. L. Forecasting hourly water demands with seasonal autoregressive models for real-time application. Water Resources Res. 54, 879–894 (2018).

    Article 

    Google Scholar
     

  • Rajballie, A., Tripathi, V. & Chinchamee, A. Water consumption forecasting models – a case study in Trinidad (Trinidad and Tobago). Water Supply 22, 5434–5447 (2022).

    Article 

    Google Scholar
     

  • Garen, D. C. Improved techniques in regression-based streamflow volume forecasting. J. Water Resour. Plann. Manage. 118, 654–670 (1992).

    Article 

    Google Scholar
     

  • Fleming, S. W., Garen, D. C., Goodbody, A. G., McCarthy, C. S. & Landers, L. C. Assessing the new Natural Resources Conservation Service water supply forecast model for the American West: a challenging test of explainable, automated, ensemble artificial intelligence. J. Hydrol. 602, 126782 (2021).

    Article 

    Google Scholar
     

  • Zhang, Y. Q., Yin, Y. H., Yin, M. J. & Zhang, X. F. A high-resolution gridded dataset for China’s monthly sectoral water use. Sci. Data 12, 1157 (2025).

    Article 

    Google Scholar
     

  • Liu, L. L., Cao, X., Li, S. J. & Jie, N. A 31-year (1990-2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci. Data 11, 124 (2024).

    Article 

    Google Scholar
     

  • Kummu, M., Kosonen, M. & Sayyar, S. M. Downscaled gridded global dataset for gross domestic product (GDP) per capita PPP over 1990–2022. Sci. Data 12, 178 (2025).

    Article 

    Google Scholar
     

  • Zhang, L., Xie, Y. H., Zhu, X. F., Ma, Q. M. & Brocca, L. CIrrMap250: annual maps of China’s irrigated cropland from 2000 to 2020 developed through multisource data integration. Earth Syst. Sci. Data 16, 5207–5226 (2024).

    Article 

    Google Scholar
     

  • Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 degrees C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article 

    Google Scholar
     

  • Babuna, P. et al. Modeling water inequality and water security: the role of water governance. J. Environ. Manage. 326, 116815–116815 (2023).

    Article 

    Google Scholar
     

  • Sheng, J. Data and code for: global water security threatened by rising inequality. Zenodo https://doi.org/10.5281/zenodo.17445879 (2025).