• GBD Chronic Kidney Disease Collaboration Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).


    Google Scholar
     

  • Kidney disease: a global health priority. Nat. Rev. Nephrol. 20, 421–423 (2024).

  • Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L. & Perkovic, V. Chronic kidney disease. Lancet 398, 786–802 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Muntner, P. Longitudinal measurements of renal function. Semin. Nephrol. 29, 650–657 (2009).

    PubMed 

    Google Scholar
     

  • Zuk, A. & Bonventre, J. V. Acute kidney injury. Annu. Rev. Med. 67, 293–307 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sethi, S. et al. Mayo clinic/renal pathology society consensus report on pathologic classification, diagnosis, and reporting of GN. J. Am. Soc. Nephrol. 27, 1278–1287 (2016).

    PubMed 

    Google Scholar
     

  • Schreibing, F. & Kramann, R. Mapping the human kidney using single-cell genomics. Nat. Rev. Nephrol. 18, 347–360 (2022).

    PubMed 

    Google Scholar
     

  • Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the human cell atlas on medicine. Nat. Med. 28, 2486–2496 (2022).

    PubMed 
    CAS 

    Google Scholar
     

  • Robinson, N. B. et al. The current state of animal models in research: a review. Int J. Surg. 72, 9–13 (2019).

    PubMed 

    Google Scholar
     

  • Zhou, J. et al. Unified mouse and human kidney single-cell expression atlas reveal commonalities and differences in disease states. J. Am. Soc. Nephrol. 34, 1843–1862 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao, K. & Rhee, S. Y. Interpreting omics data with pathway enrichment analysis. Trends Genet. 39, 308–319 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Abedini, A. et al. Single-cell multi-omic and spatial profiling of human kidneys implicates the fibrotic microenvironment in kidney disease progression. Nat. Genet. 56, 1712–1724 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, H. et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 34, 1064–1078 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abedini, A. et al. Single-cell transcriptomics and chromatin accessibility profiling elucidate the kidney protective mechanism of mineralocorticoid receptor antagonists. J. Clin. Invest. 134, e157165 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Balzer, M. S. et al. Treatment effects of soluble guanylate cyclase modulation on diabetic kidney disease at single-cell resolution. Cell Rep. Med. 4, 100992 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fischer, S. & Gillis, J. How many markers are needed to robustly determine a cell’s type? iScience 24, 103292 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Structural basis of ALDH1A2 inhibition by irreversible and reversible small molecule inhibitors. ACS Chem. Biol. 13, 582–590 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, A., Liu, Y., Lu, Y., Lee, K. & He, J. C. Disparate roles of retinoid acid signaling molecules in kidney disease. Am. J. Physiol. Ren. Physiol. 320, F683–F692 (2021).

    CAS 

    Google Scholar
     

  • Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    PubMed 
    CAS 

    Google Scholar
     

  • Safizadeh Shabestari, S. A. et al. Overlapping pathogenic de novo CNVs in neurodevelopmental disorders and congenital anomalies impacting constraint genes regulating early development. Hum. Genet. 142, 1201–1213 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Shi, W., Le, W., Tang, Q., Shi, S. & Shi, J. Regulon analysis identifies protective FXR and CREB5 in proximal tubules in early diabetic kidney disease. BMC Nephrol. 24, 180 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Crow, M., Paul, A., Ballouz, S., Huang, Z. J. & Gillis, J. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nat. Commun. 9, 884 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Grabski, I. N., Street, K. & Irizarry, R. A. Significance analysis for clustering with single-cell RNA-sequencing data. Nat. Methods 20, 1196–1202 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hill, R. Z. et al. Renal mechanotransduction is an essential regulator of renin. Preprint at bioRxiv https://doi.org/10.1101/2023.11.04.565646 (2023).

  • Tefft, J. B. et al. Notch1 and Notch3 coordinate for pericyte-induced stabilization of vasculature. Am. J. Physiol. Cell Physiol. 322, C185–C196 (2022).

    PubMed 
    CAS 

    Google Scholar
     

  • Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat. Genet. 25, 25–29 (2000).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Onoda, N. et al. Spatial and single-cell transcriptome analysis reveals changes in gene expression in response to drug perturbation in rat kidney. DNA Res. 29, dsac007 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, H., Lei, C. T. & Zhang, C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front. Immunol. 8, 405 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier, M., Menne, J. & Haller, H. Targeting the protein kinase C family in the diabetic kidney: lessons from analysis of mutant mice. Diabetologia 52, 765–775 (2009).

    PubMed 
    CAS 

    Google Scholar
     

  • Hewitson, T. D. & Smith, E. R. A metabolic reprogramming of glycolysis and glutamine metabolism is a requisite for renal fibrogenesis—why and how? Front. Physiol. 12, 645857 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Investig. 121, 4210–4221 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yan, L. J. Folic acid-induced animal model of kidney disease. Anim. Model Exp. Med. 4, 329–342 (2021).

    CAS 

    Google Scholar
     

  • Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    PubMed 
    CAS 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cao, H. et al. Tuberous sclerosis 1 (Tsc1) mediated mTORC1 activation promotes glycolysis in tubular epithelial cells in kidney fibrosis. Kidney Int. 98, 686–698 (2020).

    PubMed 
    CAS 

    Google Scholar
     

  • Salcher, S. et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 40, 1503–1520 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lau, S. C. M., Pan, Y., Velcheti, V. & Wong, K. K. Squamous cell lung cancer: current landscape and future therapeutic options. Cancer Cell 40, 1279–1293 (2022).

    PubMed 
    CAS 

    Google Scholar
     

  • Mullen, N. J. & Singh, P. K. Nucleotide metabolism: a pan-cancer metabolic dependency. Nat. Rev. Cancer 23, 275–294 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Friedlaender, A., Drilon, A., Banna, G. L., Peters, S. & Addeo, A. The METeoric rise of MET in lung cancer. Cancer 126, 4826–4837 (2020).

    PubMed 
    CAS 

    Google Scholar
     

  • Herbst, R. S., Morgensztern, D. & Boshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446–454 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Bansal, A. & Simon, M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 217, 2291–2298 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hayes, J. D. & Ashford, M. L. Nrf2 orchestrates fuel partitioning for cell proliferation. Cell Metab. 16, 139–141 (2012).

    PubMed 
    CAS 

    Google Scholar
     

  • Leitner, B. P. et al. Multimodal analysis suggests differential immuno-metabolic crosstalk in lung squamous cell carcinoma and adenocarcinoma. npj Precis. Oncol. 6, 8 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Muto, Y. et al. Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis. Nat. Commun. 13, 6497 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wilson, P. C. et al. Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression. Nat. Commun. 13, 5253 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, H. et al. Kidney multiome-based genetic scorecard reveals convergent coding and regulatory variants. Science 387, eadp4753 (2025).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol. Syst. Biol. 17, e9620 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, K. N. et al. IgA nephropathy. Nat. Rev. Dis. Prim. 2, 16001 (2016).

    PubMed 

    Google Scholar
     

  • Yang, X. et al. Genome-wide linkage and regional association study of blood pressure response to the cold pressor test in Han Chinese: the genetic epidemiology network of salt sensitivity study. Circ. Cardiovasc. Genet. 7, 521–528 (2014).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hanukoglu, I. & Hanukoglu, A. Epithelial sodium channel (ENaC) family: phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579, 95–132 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Crowley, S. D. & Coffman, T. M. The inextricable role of the kidney in hypertension. J. Clin. Invest. 124, 2341–2347 (2014).

    PubMed Central 
    CAS 

    Google Scholar
     

  • Russo, C. J. et al. Association of NEDD4L ubiquitin ligase with essential hypertension. Hypertension 46, 488–491 (2005).

    PubMed 
    CAS 

    Google Scholar
     

  • Persu, A. & Devuyst, O. Transepithelial chloride secretion and cystogenesis in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 15, 747–750 (2000).

    PubMed 
    CAS 

    Google Scholar
     

  • Müller, R. U. et al. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International. Nephrol. Dial. Transplant. 37, 825–839 (2022).

    PubMed 

    Google Scholar
     

  • Jardine, M. J., Liyanage, T., Buxton, E. & Perkovic, V. mTOR inhibition in autosomal-dominant polycystic kidney disease (ADPKD): the question remains open. Nephrol. Dial. Transplant. 28, 242–244 (2012).

    PubMed 

    Google Scholar
     

  • Li, X. et al. A tumor necrosis factor-α-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat. Med. 14, 863–868 (2008).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Song, Y., Miao, Z., Brazma, A. & Papatheodorou, I. Benchmarking strategies for cross-species integration of single-cell RNA sequencing data. Nat. Commun. 14, 6495 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rosen, Y. Towards universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN. Nat. Methods 21, 1492–1500 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Swamy, V. S., Fufa, T. D., Hufnagel, R. B. & McGaughey, D. M. Building the mega single-cell transcriptome ocular meta-atlas. GigaScience 10, giab061 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, H. et al. Cross-species single-cell transcriptomic analysis reveals divergence of cell composition and functions in mammalian ileum epithelium. Cell Regen. 11, 19 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Single cell atlas for 11 non-model mammals, reptiles and birds. Nat. Commun. 12, 7083 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Song, Y., Hu, Y., Dow, J., Perrimon, N. & Papatheodorou, I. ScGOclust: leveraging gene ontology to find functionally analogous cell types between distant species. Bioinformatics 41, i571–i579 (2025).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Andreatta, M. & Carmona, S. J. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Noureen, N., Ye, Z., Chen, Y., Wang, X. & Zheng, S. Signature-scoring methods developed for bulk samples are not adequate for cancer single-cell RNA sequencing data. eLife 11, e71994 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tomfohr, J., Lu, J. & Kepler, T. B. Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics 6, 225 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozerov, I. V. et al. In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development. Nat. Commun. 7, 13427 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Levy, O. et al. Age-related loss of gene-to-gene transcriptional coordination among single cells. Nat. Metab. 2, 1305–1315 (2020).

    PubMed 
    CAS 

    Google Scholar
     

  • Yu, T. & Bai, Y. Capturing changes in gene expression dynamics by gene set differential coordination analysis. Genomics 98, 469–477 (2011).

    PubMed 
    CAS 

    Google Scholar
     

  • Leote, A. C., Lopes, F. & Beyer, A. Loss of coordination between basic cellular processes in human aging. Nat. Aging 4, 1432–1445 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fischer, S., Crow, M., Harris, B. D. & Gillis, J. Scaling up reproducible research for single-cell transcriptomics using MetaNeighbor. Nat. Protoc. 16, 4031–4067 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Maan, H. et al. Characterizing the impacts of dataset imbalance on single-cell data integration. Nat. Biotechnol. 42, 1899–1908 (2024).

    PubMed 
    CAS 

    Google Scholar
     

  • Beckerman, P. et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat. Med. 23, 429–438 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9, giaa151 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Cakir, B. et al. Comparison of visualization tools for single-cell RNAseq data. NAR Genom. Bioinform. 2, lqaa052 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Szklarczyk, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2022).

    PubMed Central 

    Google Scholar
     

  • Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  • Gillis, J. Protocol data (Python version). figshare https://doi.org/10.6084/m9.figshare.13034171.v1 (2020).

  • Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

    PubMed 
    CAS 

    Google Scholar
     

  • Megill, C. et al. cellxgene: a performant, scalable exploration platform for high dimensional sparse matrices. Preprint at bioRxiv https://doi.org/10.1101/2021.04.05.438318 (2021).

  • Klötzer, K. A. et al. A cross-species single-cell kidney atlas: data repository. Zenodo https://doi.org/10.5281/zenodo.15007208 (2025).

  • KonstantinKltz. susztaklab/SISKA: pre-release V0.1. Zenodo https://doi.org/10.5281/zenodo.15109635 (2025).

  • KonstantinKltz. kloetzerka/CellSpectra: CellSpectra pre-release. Zenodo https://doi.org/10.5281/zenodo.15112987 (2025).