• Buckley, D. A. H., Meintjes, P. J., Potter, S. B., Marsh, T. R. & Gänsicke, B. T. Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii. Nat. Astron. 1, 0029 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Pelisoli, I. et al. A 5.3-min-period pulsing white dwarf in a binary detected from radio to X-rays. Nat. Astron. 7, 931–942 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hurley-Walker, N. et al. A radio transient with unusually slow periodic emission. Nature 601, 526–530 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hurley-Walker, N. et al. A long-period radio transient active for three decades. Nature 619, 487–490 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ronchi, M., Rea, N., Graber, V. & Hurley-Walker, N. Long-period pulsars as possible outcomes of supernova fallback accretion. Astrophys. J. 934, 184 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gençali, A. A., Ertan, Ü & Alpar, M. A. Evolution of the long-period pulsar GLEAM-X J162759.5-523504.3. Mon. Not. R. Astron. Soc. 513, L68–L71 (2022).

    Article 
    ADS 

    Google Scholar
     

  • de Ruiter, I. et al. Sporadic radio pulses from a white dwarf binary at the orbital period. Nat. Astron. 9, 672–684 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Hurley-Walker, N. et al. A 2.9 hr periodic radio transient with an optical counterpart. Astrophys. J. Lett. 976, L21 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Rodriguez, A. C. Spectroscopic detection of a 2.9-hour orbit in a long-period radio transient. Astron. Astrophys. 695, L8 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Pelisoli, I. et al. Unveiling the white dwarf in J191213.72 – 441045.1 through ultraviolet observations. Mon. Not. R. Astron. Soc. 527, 3826–3836 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Schwope, A. et al. X-ray properties of the white dwarf pulsar eRASSU J191213.9 − 441044. Astron. Astrophys. 674, L9 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Potter, S. B. & Buckley, D. A. H. Time series photopolarimetry and modelling of the white dwarf pulsar in AR Scorpii. Mon. Not. R. Astron. Soc. 481, 2384–2392 (2018).

    Article 
    ADS 

    Google Scholar
     

  • du Plessis, L. et al. Probing the non-thermal emission geometry of AR Sco via optical phase-resolved polarimetry. Mon. Not. R. Astron. Soc. 510, 2998–3010 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Qu, Y. & Zhang, B. Magnetic interactions in white dwarf binaries as mechanism for long-period radio transients. Astrophys. J. 981, 34 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Geng, J.-J., Zhang, B. & Huang, Y.-F. A model of white dwarf pulsar AR Scorpii. Astrophys. J. Lett. 831, L10 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Y.-P. Magnetic white dwarf – M dwarf binaries in pre-polar phase as special population of long-period radio transients. Preprint at http://arxiv.org/abs/2509.09224 (2025).

  • Castro Segura, N. et al. A sibling of AR Scorpii: SDSS J230641.47+244055.8 and the observational blueprint of white dwarf pulsars. Mon. Not. R. Astron. Soc. 543, 2116–2129 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, B., Harding, A. K. & Muslimov, A. G. Radio pulsar death line revisited: is PSR J2144-3933 anomalous? Astrophys. J. Lett. 531, L135–L138 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Men, Y., McSweeney, S., Hurley-Walker, N., Barr, E. & Stappers, B. A highly magnetized long-period radio transient exhibiting unusual emission features. Sci. Adv. 11, eadp6351 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Schreiber, M. R., Belloni, D., Gänsicke, B. T., Parsons, S. G. & Zorotovic, M. The origin and evolution of magnetic white dwarfs in close binary stars. Nat. Astron. 5, 648–654 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Anumarlapudi, A. et al. ASKAP J144834-685644: a newly discovered long period radio transient detected from radio to X-rays. Mon. Not. R. Astron. Soc. 542, 1208–1232 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Dong, F. A. et al. CHIME/fast radio burst discovery of an unusual circularly polarized long-period radio transient with an accelerating spin period. Astrophys. J. Lett. 988, L29 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Bloot, S. et al. Strongly polarised radio pulses from a new white-dwarf-hosting long-period transient. Astron. Astrophys. 699, A341 (2025).

    Article 

    Google Scholar
     

  • Takata, J., Yang, H. & Cheng, K. S. A model for AR Scorpii: emission from relativistic electrons trapped by closed magnetic field lines of magnetic white dwarfs. Astrophys. J. 851, 143 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wood, B. E., Müller, H. R., Zank, G. P., Linsky, J. L. & Redfield, S. New mass-loss measurements from astrospheric Lyα absorption. Astrophys. J. Lett. 628, L143–L146 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Detection of X-ray emission from a bright long-period radio transient. Nature 642, 583–586 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Mukai, K. X-ray emissions from accreting white dwarfs: a review. Publ. Astron. Soc. Pac. 129, 062001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Lyutikov, M. et al. Magnetospheric interaction in white dwarf binaries AR Sco and AE Aqr. Preprint at http://arxiv.org/abs/2004.11474 (2020).

  • Goldreich, P. & Lynden-Bell, D. Io, a Jovian unipolar inductor. Astrophys. J. 156, 59–78 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Katz, J. I. AR Sco: a precessing white dwarf synchronar? Astrophys. J. 835, 150 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Coppejans, D. L. et al. Novalike cataclysmic variables are significant radio emitters. Mon. Not. R. Astron. Soc. 451, 3801–3813 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Barrett, P., Dieck, C., Beasley, A. J., Mason, P. A. & Singh, K. P. Radio observations of magnetic cataclysmic variables. Adv. Space Res. 66, 1226–1234 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Melrose, D. B. & Dulk, G. A. Electron cyclotron maser emission at oblique angles. Planet. Space Sci. 41, 333–339 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Radhakrishnan, V. & Cooke, D. J. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. J. Lett. 3, 225 (1969).


    Google Scholar
     

  • Gangadhara, R. T. Orthogonal polarization mode phenomenon in pulsars. Astron. Astrophys. 327, 155–166 (1997).

    ADS 

    Google Scholar
     

  • Konar, S. Enigma of GLEAM-X J162759.5–523504.3. J. Astrophys. Astron 44, 1 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tong, H. Discussions on the nature of GLEAM-X J162759.5-523504.3. Astrophys. J. 943, 3 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Katz, J. I. GLEAM-X J162759.5 − 523504.3 as a white dwarf pulsar. Astrophys. Space Sci. 367, 108 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cary, S., Lu, W., Leung, C. & Wong, T. L. S. Accretion from a shock-inflated companion: spinning down neutron stars to hour-long periods. Preprint at http://arxiv.org/abs/2507.10682 (2025).

  • Mao, Y.-H., Li, X.-D., Lai, D., Deng, Z.-L. & Yang, H.-R. A binary origin for ultralong-period radio pulsars. Astrophys. J. Lett. 988, L11 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Baumgarte, T. W. & Shapiro, S. L. Could long-period transients be powered by primordial black hole capture? Phys. Rev. D 109, 063004 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, X. & Shen, R.-F. Apparently ultralong period radio signals from self-lensed pulsar–black hole binaries. Astrophys. J. 972, 60 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Nathanail, A. Identifying long radio transients with accompanying X-ray emission as disk-jet precessing black holes: the case of ASKAP J1832-0911. Astron. Astrophys. 704, A123 (2025).

  • Zhou, X., Kurban, A., Liu, W.-T., Wang, N. & Yuan, Y.-J. Nature of ultralong period radio transients: could they be strange dwarf pulsars? Astrophys. J. 986, 98 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Lee, Y. W. J. et al. The emission of interpulses by a 6.45-h-period coherent radio transient. Nat. Astron. 9, 393–405 (2025).

    Article 
    ADS 

    Google Scholar
     

  • McSweeney, S. J. et al. A new long-period radio transient: discovery of pulses repeating every 1.16 h from ASKAP J175534.9-252749.1. Mon. Not. R. Astron. Soc. 542, 203–214 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Caleb, M. et al. An emission-state-switching radio transient with a 54-minute period. Nat. Astron. 8, 1159–1168 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Dong, F. A. et al. CHIME/fast radio burst/pulsar discovery of a nearby long-period radio transient with a timing glitch. Astrophys. J. Lett. 990, L49 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Hotan, A. W. et al. Australian Square Kilometre Array Pathfinder. I. System description. Publ. Astron. Soc. Aust. 38, e009 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jonas, J. The MeerKAT radio telescope. Proc. Sci. 277, 1 (2018).

  • Perley, R. A., Chandler, C. J., Butler, B. J. & Wrobel, J. M. The Expanded Very Large Array: a new telescope for new science. Astrophys. J. Lett. 739, L1 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Perley, R. A. & Butler, B. J. An accurate flux density scale from 50 MHz to 50 GHz. Astrophys. J. Suppl. Ser. 230, 7 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Perley, R., Greisen, E. & Hugo, B. EVLA Memo 219 Enabling MeerKAT Polarimetric Imaging in AIPS Technical Report (National Radio Astronomy Observatory, 2022).

  • Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Pritchard, J. askap-vast/dstools: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.13626183 (2024).

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Horváth, C. VLA, MeerKAT, and ASKAP dynamic spectra of GPM J1839−10. Zenodo https://doi.org/10.5281/zenodo.17708754 (2025).