• McClenachan, L., Cooper, A. B., McKenzie, M. G. & Drew, J. A. The importance of surprising results and best practices in historical ecology. BioScience 65, 932–939 (2015).

    Article 

    Google Scholar
     

  • Clavero, M. The King’s aquatic desires: 16th-century fish and crayfish introductions into Spain. Fish. Fish. 23, 1251–1263 (2022).

    Article 

    Google Scholar
     

  • Monsarrat, S., Novellie, P., Rushworth, I. & Kerley, G. Shifted distribution baselines: neglecting long-term biodiversity records risks overlooking potentially suitable habitat for conservation management. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190215 (2019).

    Article 

    Google Scholar
     

  • Clavero, M., García-Reyes, A., Fernández-Gil, A., Revilla, E. & Fernández, N. Where wolves were: setting historical baselines for wolf recovery in Spain. Anim. Conserv. 26, 239–249 (2023).

    Article 

    Google Scholar
     

  • Collins, A. C., Böhm, M. & Collen, B. Choice of baseline affects historical population trends in hunted mammals of North America. Biol. Conserv. 242, 108421 (2020).

    Article 

    Google Scholar
     

  • Grace, M. et al. Using historical and palaeoecological data to inform ambitious species recovery targets. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190297 (2019).

    Article 

    Google Scholar
     

  • Thurstan, R. H. et al. Records reveal the vast historical extent of European oyster reef ecosystems. Nat. Sustain. https://doi.org/10.1038/s41893-024-01441-4 (2024).

  • Szabó, P. Historical ecology: past, present and future. Biol. Rev. 90, 997–1014 (2015).

    Article 

    Google Scholar
     

  • Armstrong, C. G. et al. Anthropological contributions to historical ecology: 50 questions, infinite prospects. PLoS ONE 12, e0171883 (2017).

    Article 

    Google Scholar
     

  • Russell, E. W. B. People and the Land Through Time: Linking Ecology and History (Yale Univ. Press, 1997).

  • Haidvogl, G. et al. Typology of historical sources and the reconstruction of long-term historical changes of riverine fish: a case study of the Austrian Danube and northern Russian rivers. Ecol. Freshw. Fish. 23, 498–515 (2014).

    Article 

    Google Scholar
     

  • Mottl, O. et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 372, 860–864 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Buldrini, F. et al. Botanical memory: five centuries of floristic changes revealed by a Renaissance herbarium (Ulisse Aldrovandi, 1551–1586). R. Soc. Open. Sci. 10, 230866 (2023).

    Article 

    Google Scholar
     

  • Tomscha, S. A. et al. A guide to historical data sets for reconstructing ecosystem service change over time. BioScience 66, 747–762 (2016).

    Article 

    Google Scholar
     

  • Clavero, M. & Hermoso, V. Historical data to plan the recovery of the European eel. J. Appl. Ecol. 52, 960–968 (2015).

    Article 

    Google Scholar
     

  • Sales, L. P. et al. The effect of past defaunation on ranges, niches, and future biodiversity forecasts. Glob. Change Biol. 28, 3683–3693 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Viana, D. S., Oficialdegui, F. J., Soriano, M. D. C., Hermoso, V. & Clavero, M. Niche dynamics along two centuries of multiple crayfish invasions. J. Anim. Ecol. 92, 2138–2150 (2023).

    Article 

    Google Scholar
     

  • Vellend, M., Brown, C. D., Kharouba, H. M., McCune, J. L. & Myers-Smith, I. H. Historical ecology: using unconventional data sources to test for effects of global environmental change. Am. J. Bot. 100, 1294–1305 (2013).

    Article 

    Google Scholar
     

  • Nogué, S. et al. The human dimension of biodiversity changes on islands. Science 372, 488–491 (2021).

    Article 

    Google Scholar
     

  • Stegner, M. A. & Spanbauer, T. L. North American pollen records provide evidence for macroscale ecological changes in the Anthropocene. Proc. Natl Acad. Sci. USA 120, e2306815120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Davies, A. L., Streeter, R., Lawson, I. T., Roucoux, K. H. & Hiles, W. The application of resilience concepts in palaeoecology. Holocene 28, 1523–1534 (2018).

    Article 

    Google Scholar
     

  • Buma, B. et al. The value of linking paleoecological and neoecological perspectives to understand spatially-explicit ecosystem resilience. Landsc. Ecol. 34, 17–33 (2019).

    Article 

    Google Scholar
     

  • Benito, B. M., Gil-Romera, G. & Birks, H. J. B. Ecological memory at millennial time-scales: the importance of data constraints, species longevity and niche features. Ecography 43, 1–10 (2020).

    Article 

    Google Scholar
     

  • Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia. Ecol. Lett. 17, 360–368 (2014).

    Article 

    Google Scholar
     

  • Frisch, D., Becker, D. & Wojewodzic, M. W. Dissecting the transcriptomic basis of phenotypic evolution in an aquatic keystone grazer. Mol. Biol. Evol. 37, 475–487 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, N. J., Bugmann, H., Dearing, J. A. & Gaillard, M.-J. Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol. Evol. 21, 696–704 (2006).

    Article 

    Google Scholar
     

  • Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Monsarrat, S. & Svenning, J.-C. Using recent baselines as benchmarks for megafauna restoration places an unfair burden on the Global South. Ecography 2022, e05795 (2022).

    Article 

    Google Scholar
     

  • McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl Acad. Sci. USA 111, E807–E816 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Grenz, J. & Armstrong, C. G. Pop-up restoration in colonial contexts: applying an indigenous food systems lens to ecological restoration. Front. Sustain. Food Syst. 7, 1244790 (2023).

    Article 

    Google Scholar
     

  • Pooley, S. Historians are from Venus, ecologists are from Mars. Conserv. Biol. 27, 1481–1483 (2014).

    Article 

    Google Scholar
     

  • Crabtree, S. A. & Dunne, J. A. Towards a science of archaeoecology. Trends Ecol. Evol. 37, 976–984 (2022).

    Article 

    Google Scholar
     

  • Woodbridge, J. et al. What drives biodiversity patterns? Using long-term multidisciplinary data to discern centennial-scale change. J. Ecol. 109, 1396–1410 (2021).

    Article 

    Google Scholar
     

  • Swetnam, T. W., Allen, C. D. & Betancourt, J. L. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).

    Article 

    Google Scholar
     

  • Turner, N. J. et al. Cultural management of living trees: an international perspective. J. Ethnobiol. 29, 237–270 (2009).

    Article 

    Google Scholar
     

  • Rostain, S. et al. Two thousand years of garden urbanism in the Upper Amazon. Science 383, 183–189 (2024).

    Article 
    CAS 

    Google Scholar
     

  • McClanahan, T. R. & Omukoto, J. O. Comparison of modern and historical fish catches (AD 750–1400) to inform goals for marine protected areas and sustainable fisheries. Conserv. Biol. 25, 945–955 (2011).

    Article 

    Google Scholar
     

  • Balée, W. & Erickson, C. Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands (Columbia Univ. Press, 2006).

  • Skovrind, M. et al. Elucidating the sustainability of 700  y of Inuvialuit beluga whale hunting in the Mackenzie River Delta, Northwest Territories, Canada. Proc. Natl Acad. Sci. USA 121, e2405993121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Müllerová, J., Szabó, P. & Hédl, R. The rise and fall of traditional forest management in southern Moravia: a history of the past 700  years. For. Ecol. Manag. 331, 104–115 (2014).

    Article 

    Google Scholar
     

  • Östlund, L. et al. Culturally modified trees and forest structure at a Kawésqar ancient settlement at Río Batchelor, western Patagonia. Hum. Ecol. 48, 585–597 (2020).

    Article 

    Google Scholar
     

  • Ames, E. P. Atlantic cod stock structure in the Gulf of Maine. Fisheries 29, 10–28 (2004).

    Article 

    Google Scholar
     

  • Turner, N. J., Geralda Armstrong, C. & Lepofsky, D. Adopting a root: documenting ecological and cultural signatures of plant translocations in Northwestern North America. Am. Anthropol. 123, 879–897 (2021).

    Article 

    Google Scholar
     

  • Biró, M. et al. Oral history methods can reveal drivers of landscape transformation: understanding land-use legacies with local and traditional knowledge in Central Europe. People Nat. 6, 2463–2479 (2024).

    Article 

    Google Scholar
     

  • Fogerty, J. E. in The Historical Ecology Handbook: A Restorationist’s Guide to Reference Ecosystems (eds Egan, D. & Howell, E. A.) 101–120 (Oxford Univ. Press, 2001).

  • Letham, B., Lepofsky, D. & Greening, S. Wil Luunda ‘Waada aks (Where the Waters Meet): deep-time histories of shifting estuarine landscapes and human settlement in Laxgalts’ap watershed, northern British Columbia, Canada. J. Isl. Coast. Archaeol. 20, 174–203 (2023).

    Article 

    Google Scholar
     

  • Tattoni, C. Nomen omen. Toponyms predict recolonization and extinction patterns for large carnivores. Nat. Conserv. 37, 1 (2019).

    Article 

    Google Scholar
     

  • Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).

    Article 

    Google Scholar
     

  • Knopp, J. A., Levenstein, B., Watson, A., Ivanova, I. & Lento, J. Systematic review of documented Indigenous knowledge of freshwater biodiversity in the circumpolar Arctic. Freshw. Biol. 67, 194–209 (2022).

    Article 

    Google Scholar
     

  • Hughes, A. C. et al. Reconstructing cave past to manage and conserve cave present and future. Ecol. Indic. 155, 111051 (2023).

    Article 

    Google Scholar
     

  • Schulte, L. A. & Mladenoff, D. J. The original US public land survey records: their use and limitations in reconstructing presettlement vegetation. J. For. 99, 5–10 (2001).


    Google Scholar
     

  • Viana, D. S., Blanco-Garrido, F., Delibes, M. & Clavero, M. A 16th-century biodiversity and crop inventory. Ecology 103, e3783 (2022).

    Article 

    Google Scholar
     

  • Barlow, G. The landscape of Domesday Suffolk. Landsc. Hist. 32, 19–36 (2011).

    Article 

    Google Scholar
     

  • d’Andrimont, R. et al. Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union. Sci. Data 7, 352 (2020).

    Article 

    Google Scholar
     

  • Forejt, M., Dolejš, M., Zacharová, J. & Raška, P. Quantifying inconsistencies in old cadastral maps and their impact on land-use reconstructions. J. Land. Use Sci. 15, 570–584 (2020).

    Article 

    Google Scholar
     

  • Thurstan, R. H., Campbell, A. B. & Pandolfi, J. M. Nineteenth century narratives reveal historic catch rates for Australian snapper (Pagrus auratus). Fish. Fish. 17, 210–225 (2016).

    Article 

    Google Scholar
     

  • Clavero, M. Species substitutions driven by anthropogenic positive feedbacks: Spanish crayfish species as a case study. Biol. Conserv. 193, 80–85 (2016).

    Article 

    Google Scholar
     

  • Levin, P. S. & Dufault, A. Eating up the food web. Fish Fish. 11, 307–312 (2010).

    Article 

    Google Scholar
     

  • Walker, R. D. & Jones, G. A. Consumer-driven depletion of the northern diamondback terrapin in Chesapeake Bay. Mar. Coast. Fish. 10, 132–143 (2018).

    Article 

    Google Scholar
     

  • Turvey, S. T. & McClune, K. Expanding the historical baseline: using pre-modern archives to inform conservation from ecological and human perspectives. BioScience 75, 240–250 (2025).

    Article 

    Google Scholar
     

  • Primack, R. B., Higuchi, H. & Miller-Rushing, A. J. The impact of climate change on cherry trees and other species in Japan. Biol. Conserv. 142, 1943–1949 (2009).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Range contraction of the Yangtze finless porpoise inferred from classic Chinese poems. Curr. Biol. 35, R329–R330 (2025).

    Article 
    CAS 

    Google Scholar
     

  • McBride, E., Winder, I. C. & Wüster, W. What bit the ancient Egyptians? Niche modelling to identify the snakes described in the Brooklyn medical papyrus. Environ. Archaeol. 30, 354–367 (2023).

    Article 

    Google Scholar
     

  • Van Houtan, K. S., McClenachan, L. & Kittinger, J. N. Seafood menus reflect long-term ocean changes. Front. Ecol. Env. 11, 289–290 (2013).

    Article 

    Google Scholar
     

  • Miyazaki, Y. & Murase, A. Fish rubbings, ‘gyotaku’, as a source of historical biodiversity data. ZooKeys 904, 89–101 (2020).

    Article 

    Google Scholar
     

  • Mustonen, T. Communal visual histories to detect environmental change in northern areas: examples of emerging North American and Eurasian practices. Ambio 44, 766–777 (2015).

    Article 

    Google Scholar
     

  • Tribot, A.-S., Faget, D., Villesseche, H., Richard, T. & Changeux, T. Multi-secular and regional trends of aquatic biodiversity in European early modern paintings: toward an ecological and historical significance. Ecol. Soc. 26, 26 (2021).

    Article 

    Google Scholar
     

  • Depauw, L. et al. The use of photos to investigate ecological change. J. Ecol. 110, 1220–1236 (2022).

    Article 

    Google Scholar
     

  • Burney, D. A. et al. Rock art from Andriamamelo Cave in the Beanka protected area of western Madagascar. J. Isl. Coast. Archaeol. 17, 171–194 (2022).

    Article 

    Google Scholar
     

  • Veth, P., Myers, C., Heaney, P. & Ouzman, S. Plants before farming: the deep history of plant-use and representation in the rock art of Australia’s Kimberley region. Quat. Int. 489, 26–45 (2018).

    Article 

    Google Scholar
     

  • Guagnin, M. et al. Rock art provides new evidence on the biogeography of kudu (Tragelaphus imberbis), wild dromedary, aurochs (Bos primigenius) and African wild ass (Equus africanus) in the early and middle Holocene of north-western Arabia. J. Biogeogr. 45, 727–740 (2018).

    Article 

    Google Scholar
     

  • Guidetti, P. & Micheli, F. Ancient art serving marine conservation. Front. Ecol. Environ. 9, 374–375 (2011).

    Article 

    Google Scholar
     

  • Iriarte, J. et al. Ice Age megafauna rock art in the Colombian Amazon? Philos. Trans. R. Soc. B: Biol. Sci. 377, 20200496 (2022).

    Article 

    Google Scholar
     

  • Begossi, A. & Caires, R. Art, fisheries and ethnobiology. J. Ethnobiol. Ethnomed. 11, 16 (2015).

    Article 

    Google Scholar
     

  • Warren, D. R. et al. An interdisciplinary framework for evaluating 19th century landscape paintings for ecological research. Ecosphere 14, e4649 (2023).

    Article 

    Google Scholar
     

  • Overduin-de Vries, A. M. O. & Smith, P. J. in Ichthyology in Context (1500–1880) (eds Smith, P. J. & Egmond, F.) 298–321 (Brill, 2023).

  • Hayashi, R. Past biodiversity: historical Japanese illustrations document the distribution of whales and their epibiotic barnacles. Ecol. Indic. 45, 687–691 (2014).

    Article 

    Google Scholar
     

  • McClenachan, L. Documenting loss of large trophy fish from the Florida keys with historical photographs. Conserv. Biol. 23, 636–643 (2009).

    Article 

    Google Scholar
     

  • De Frenne, P. et al. Using archived television video footage to quantify phenology responses to climate change. Methods Ecol. Evol. 9, 1874–1882 (2018).

    Article 

    Google Scholar
     

  • Rohde, R. F. & Hoffman, M. T. The historical ecology of namibian rangelands: vegetation change since 1876 in response to local and global drivers. Sci. Total. Environ. 416, 276–288 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Morueta-Holme, N., Iversen, L. L., Corcoran, D., Rahbek, C. & Normand, S. Unlocking ground-based imagery for habitat mapping. Trends Ecol. Evol. 39, 349–358 (2023).

    Article 

    Google Scholar
     

  • Sanseverino, M. E., Whitney, M. J. & Higgs, E. S. Exploring landscape change in mountain environments with the mountain legacy online image analysis toolkit. Mt. Res. Dev. 36, 407–416 (2016).

    Article 

    Google Scholar
     

  • Munteanu, C. et al. Forest and agricultural land change in the Carpathian region—a meta-analysis of long-term patterns and drivers of change. Land. Use Policy 38, 685–697 (2014).

    Article 

    Google Scholar
     

  • Loran, C., Haegi, S. & Ginzler, C. Comparing historical and contemporary maps—a methodological framework for a cartographic map comparison applied to Swiss maps. Int. J. Geogr. Inf. Sci. 32, 2123–2139 (2018).

    Article 

    Google Scholar
     

  • Bergès, L. & Dupouey, J.-L. Historical ecology and ancient forests: progress, conservation issues and scientific prospects, with some examples from the French case. J. Veg. Sci. 32, e12846 (2021).

    Article 

    Google Scholar
     

  • Wulder, M. A. et al. Fifty years of Landsat science and impacts. Remote. Sens. Environ. 280, 113195 (2022).

    Article 

    Google Scholar
     

  • Munteanu, C. et al. The potential of historical spy-satellite imagery to support research in ecology and conservation. BioScience 74, 159–168 (2024).

    Article 

    Google Scholar
     

  • Lišèák, V. Mapa mondi (Catalan Atlas of 1375), Majorcan cartographic school, and 14th century Asia. Proc. ICA 1, 1–8 (2018).

    Article 

    Google Scholar
     

  • Goldberg, E., Kirby, K., Hall, J. & Latham, J. The ancient woodland concept as a practical conservation tool in Great Britain. J. Nat. Conserv. 15, 109–119 (2007).

    Article 

    Google Scholar
     

  • Fuchs, R., Verburg, P. H., Clevers, J. G. P. W. & Herold, M. The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Appl. Geogr. 59, 43–55 (2015).

    Article 

    Google Scholar
     

  • Kaim, D. et al. Broad scale forest cover reconstruction from historical topographic maps. Appl. Geogr. 67, 39–48 (2016).

    Article 

    Google Scholar
     

  • Lieskovský, J. et al. Historical land use dataset of the Carpathian region (1819–1980). J. Maps 14, 644–651 (2018).

    Article 

    Google Scholar
     

  • Thorne, J. H. & Le, T. N. California’s historic legacy for landscape change, the Wieslander Vegetation Type Maps. Madroño 63, 293–328 (2016).

    Article 

    Google Scholar
     

  • Walker, S. Cultural barriers to market integration: evidence from 19th century Austria. J. Comp. Econ. 46, 1122–1145 (2018).

    Article 

    Google Scholar
     

  • Kaim, D., Szwagrzyk, M., Dobosz, M., Troll, M. & Ostafin, K. Mid-19th-century building structure locations in Galicia and Austrian Silesia under the Habsburg monarchy. Earth Syst. Sci. Data 13, 1693–1709 (2021).

    Article 

    Google Scholar
     

  • Fretwell, P. T. et al. Using remote sensing to detect whale strandings in remote areas: the case of sei whales mass mortality in Chilean Patagonia. PLoS ONE 14, e0222498 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Padubidri, C., Kamilaris, A., Karatsiolis, S. & Kamminga, J. Counting sea lions and elephants from aerial photography using deep learning with density maps. Anim. Biotelemetry 9, 27 (2021).

    Article 

    Google Scholar
     

  • Park, D. S. et al. Herbarium records provide reliable phenology estimates in the understudied tropics. J. Ecol. 111, 327–337 (2023).

    Article 

    Google Scholar
     

  • Sanders, N. J., Cooper, N., Davis Rabosky, A. R. & Gibson, D. J. Leveraging natural history collections to understand the impacts of global change. J. Anim. Ecol. 92, 232–236 (2023).

    Article 

    Google Scholar
     

  • Fortibuoni, T., Libralato, S., Raicevich, S., Giovanardi, O. & Solidoro, C. Coding early naturalists’ accounts into long-term fish community changes in the Adriatic Sea (1800–2000). PLoS ONE 5, e15502 (2010).

    Article 

    Google Scholar
     

  • Egmond, F. C. in Ichthyology in Context (1500–1880) (eds Smith, P. J. & Egmond, F.) 147–243 (Brill, 2023).

  • Mullin, V. E. et al. First large-scale quantification study of DNA preservation in insects from natural history collections using genome-wide sequencing. Methods Ecol. Evol. 14, 360–371 (2023).

    Article 

    Google Scholar
     

  • Forcina, G. et al. Introduced and extinct: neglected archival specimens shed new light on the historical biogeography of an iconic avian species in the Mediterranean. Integrative Zool. 19, 887–897 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170386 (2018).

    Article 

    Google Scholar
     

  • Lang, P. L. M., Willems, F. M., Scheepens, J. F., Burbano, H. A. & Bossdorf, O. Using herbaria to study global environmental change. N. Phytol. 221, 110–122 (2019).

    Article 

    Google Scholar
     

  • Law, W. & Salick, J. Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc. Natl Acad. Sci. USA 102, 10218–10220 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Gotelli, N. J. et al. Estimating species relative abundances from museum records. Methods Ecol. Evol. 14, 431–443 (2023).

    Article 

    Google Scholar
     

  • Bartomeus, I., Stavert, J. R., Ward, D. & Aguado, O. Historical collections as a tool for assessing the global pollination crisis. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170389 (2018).

    Article 

    Google Scholar
     

  • Rakosy, D., Ashman, T.-L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Funct. Ecol. 37, 218–233 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past. PLoS ONE 9, e103132 (2014).

    Article 

    Google Scholar
     

  • Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Smith, A. B. et al. Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography 36, 1017–1031 (2013).

    Article 

    Google Scholar
     

  • Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Vild, O. et al. Long-term shift towards shady and nutrient-rich habitats in Central European temperate forests. N. Phytol. 242, 1018–1028 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Abzhanov, A. Darwin’s Galápagos finches in modern biology. Philos. Trans. R. Soc. B: Biol. Sci. 365, 1001–1007 (2010).

    Article 

    Google Scholar
     

  • Hortal, J., Diniz-Filho, J. A. F., Low, M. E. Y., Stigall, A. L. & Yeo, D. C. J. Alfred Russel Wallace’s legacy: an interdisciplinary conception of evolution in space and time. NPJ Biodivers. 2, 1–3 (2023).

    Article 

    Google Scholar
     

  • Smol, J. P. et al. (eds.). Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators Vol. 3 (Springer Netherlands, 2001).

  • Brewer, S., Jackson, S. T. & Williams, J. W. Paleoecoinformatics: applying geohistorical data to ecological questions. Trends Ecol. Evol. 27, 104–112 (2012).

    Article 

    Google Scholar
     

  • Leunda, M. et al. Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics. J. Ecol. 107, 814–828 (2019).

    Article 

    Google Scholar
     

  • González-Sampériz, P. et al. Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: the Villarquemado sequence in NE Iberia. Quat. Sci. Rev. 242, 106425 (2020).

    Article 

    Google Scholar
     

  • Ellegaard, M. et al. Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun. Biol. 3, 1–11 (2020).

    Article 

    Google Scholar
     

  • Fairchild, I. J. & Baker, A. Speleothem Science: From Process to Past Environments (Wiley, 2012).

  • Chase, B. M. et al. Rock hyrax middens: a palaeoenvironmental archive for southern African drylands. Quat. Sci. Rev. 56, 107–125 (2012).

    Article 

    Google Scholar
     

  • Moore, G., Tessler, M., Cunningham, S. W., Betancourt, J. & Harbert, R. Paleo-metagenomics of North American fossil packrat middens: past biodiversity revealed by ancient DNA. Ecol. Evol. 10, 2530–2544 (2020).

    Article 

    Google Scholar
     

  • Campbell, J. W., Waters, M. N. & Rich, F. Guano core evidence of palaeoenvironmental change and Woodland Indian inhabitance in Fern Cave, Alabama, USA, from the mid-Holocene to present. Boreas 46, 462–469 (2017).

    Article 

    Google Scholar
     

  • Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).

    Article 

    Google Scholar
     

  • Hoffman, K. M., Lertzman, K. P. & Starzomski, B. M. Ecological legacies of anthropogenic burning in a British Columbia coastal temperate rain forest. J. Biogeogr. 44, 2903–2915 (2017).

    Article 

    Google Scholar
     

  • Greiser, C. & Joosten, H. Archive value: measuring the palaeo-information content of peatlands in a conservation and compensation perspective. Int. J. Biodivers. Science, Ecosyst. Serv. Manag. 14, 209–220 (2018).

    Article 

    Google Scholar
     

  • Prentice, I. C. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat. Res. 23, 76–86 (1985).

    Article 

    Google Scholar
     

  • Vleminckx, J. et al. Soil charcoal to assess the impacts of past human disturbances on tropical forests. PLoS ONE 9, e108121 (2014).

    Article 

    Google Scholar
     

  • Orsini, L. et al. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol. Evol. 28, 274–282 (2013).

    Article 

    Google Scholar
     

  • Sandom, C. J., Ejrnæs, R., Hansen, M. D. D. & Svenning, J.-C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).

    Article 

    Google Scholar
     

  • Anderson, N. J. Landscape disturbance and lake response: temporal and spatial perspectives. Frer 7, 77–120 (2014).

    Article 

    Google Scholar
     

  • Pearce, E. A. et al. Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens. Sci. Adv. 9, eadi9135 (2023).

    Article 

    Google Scholar
     

  • Izdebski, A. et al. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01652-4 (2022).

  • Nikulina, A. et al. Hunter-gatherer impact on European interglacial vegetation: a modelling approach. Quat. Sci. Rev. 324, 108439 (2024).

    Article 

    Google Scholar
     

  • Pearce, E. A. et al. Drivers of vegetation structure differ between proposed natural reference conditions for temperate Europe. Glob. Ecol. Biogeogr. 34, e70020 (2025).

    Article 

    Google Scholar
     

  • Karitter, P. et al. Combining the resurrection approach with transplant experiments to investigate adaptation of plant populations to environmental change. Perspect. Plant. Ecol., Evol. Syst. 62, 125773 (2024).

    Article 

    Google Scholar
     

  • Wersebe, M. J. & Weider, L. J. Resurrection genomics provides molecular and phenotypic evidence of rapid adaptation to salinization in a keystone aquatic species. Proc. Natl Acad. Sci. USA 120, e2217276120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jackson, S. T. & Blois, J. L. Community ecology in a changing environment: perspectives from the quaternary. Proc. Natl Acad. Sci. USA 112, 4915–4921 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rapacciuolo, G. & Blois, J. L. Understanding ecological change across large spatial, temporal and taxonomic scales: integrating data and methods in light of theory. Ecography 42, 1247–1266 (2019).

    Article 

    Google Scholar
     

  • Bayraktarov, E. et al. Do big unstructured biodiversity data mean more knowledge? Front. Ecol. Evol. 6, 239 (2019).

    Article 

    Google Scholar
     

  • Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).

    Article 

    Google Scholar
     

  • Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lotze, H. K. et al. in Shifting Baselines: The Past and the Future of Ocean Fisheries (eds Jackson, J. B. C., Alexander, K. E. & Sala, E.) 137–161 (Island Press/Center for Resource Economics, 2011).

  • McClenachan, L. et al. Global research priorities for historical ecology to inform conservation. Endanger. Species Res. 54, 285–310 (2024).

    Article 

    Google Scholar
     

  • Fairhead, J. & Leach, M. in Misreading the African Landscape: Society and Ecology in a Forest-Savanna Mosaic (eds Fairhead, J. & Leach, M.) 55–85 (Cambridge Univ. Press, 1996).

  • Pluskowski, A., Brown, A. & Seetah, K. The challenges and future of environmental archaeology in Mauritius. Int. J. Histor. Archaeol. https://doi.org/10.1007/s10761-023-00727-1 (2024).

  • Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).

    Article 

    Google Scholar
     

  • Kittinger, J. N. et al. Historical reconstruction reveals recovery in Hawaiian coral reefs. PLoS ONE 6, e25460 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gil-Romera, G., Lamb, H. F., Turton, D., Sevilla-Callejo, M. & Umer, M. Long-term resilience, bush encroachment patterns and local knowledge in a Northeast African savanna. Glob. Environ. Change 20, 612–626 (2010).

    Article 

    Google Scholar
     

  • Clavero, M. Shifting baselines and the conservation of non-native species. Conserv. Biol. 28, 1434–1436 (2014).

    Article 

    Google Scholar
     

  • Clavero, M., Nores, C., Kubersky-Piredda, S. & Centeno-Cuadros, A. Interdisciplinarity to reconstruct historical introductions: solving the status of cryptogenic crayfish. Biol. Rev. 91, 1036–1049 (2016).

    Article 

    Google Scholar
     

  • Szabó, P. et al. Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic. Reg. Env. Change 17, 501–514 (2017).

    Article 

    Google Scholar
     

  • Li, B., Pan, R. & Oxnard, C. E. Extinction of snub-nosed monkeys in China during the past 400 years. Int. J. Primatol. 23, 1227–1244 (2002).

    Article 

    Google Scholar
     

  • Early-Capistrán, M.-M. et al. Reconstructing 290 years of a data-poor fishery through ethnographic and archival research: the East Pacific green turtle (Chelonia mydas) in Baja California, Mexico. Fish. Fish. 19, 57–77 (2018).

    Article 

    Google Scholar
     

  • Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170391 (2018).

    Article 

    Google Scholar
     

  • Nowak, M. M., Słupecka, K. & Jackowiak, B. Geotagging of natural history collections for reuse in environmental research. Ecol. Indic. 131, 108131 (2021).

    Article 

    Google Scholar
     

  • Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19, 173–180 (2016).

    Article 

    Google Scholar
     

  • Knollová, I. et al. ReSurveyEurope: a database of resurveyed vegetation plots in Europe. J. Veg. Sci. 35, e13235 (2024).

    Article 

    Google Scholar
     

  • Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).

    Article 

    Google Scholar
     

  • Szabó, P. et al. More than trees: the challenges of creating a geodatabase to capture the complexity of forest history. Hist. Methods: A J. Quant. Interdiscip. Hist. 51, 175–189 (2018).

    Article 

    Google Scholar
     

  • Wilson, R. J. et al. Applying computer vision to digitised natural history collections for climate change research: temperature-size responses in British butterflies. Methods Ecol. Evol. 14, 372–384 (2023).

    Article 

    Google Scholar
     

  • Weeks, B. C. et al. A deep neural network for high-throughput measurement of functional traits on museum skeletal specimens. Methods Ecol. Evol. 14, 347–359 (2023).

    Article 

    Google Scholar
     

  • von Allmen, R. et al. Method development and application of object detection and classification to Quaternary fossil pollen sequences. Quat. Sci. Rev. 327, 108521 (2024).

    Article 

    Google Scholar
     

  • Dunker, S. et al. Pollen analysis using multispectral imaging flow cytometry and deep learning. N. Phytol. 229, 593–606 (2021).

    Article 

    Google Scholar
     

  • Nita, M. D., Munteanu, C., Gutman, G., Abrudan, I. V. & Radeloff, V. C. Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote. Sens. Environ. 204, 322–332 (2018).

    Article 

    Google Scholar
     

  • Kirillov, A. et al. Segment anything. In Proc. IEEE/CVF International Conf. on Computer Vision (ICCV), 4015–4026 (2023).

  • Tricker, J. et al. Assessing the accuracy of georeferenced landcover data derived from oblique imagery using machine learning. Remote. Sens. Ecol. Conserv. 10, 401–415 (2024).

    Article 

    Google Scholar
     

  • Bugeja, M., Dingli, A. & Seychell, D. in Rediscovering Heritage Through Technology: A Collection of Innovative Research Case Studies That Are Reworking The Way We Experience Heritage (eds. Seychell, D. & Dingli, A.) 3–23 (Springer International, 2020).

  • Muehlberger, G. et al. Transforming scholarship in the archives through handwritten text recognition: Transkribus as a case study. J. Doc. 75, 954–976 (2019).

    Article 

    Google Scholar
     

  • Suissa, O., Elmalech, A. & Zhitomirsky-Geffet, M. Text analysis using deep neural networks in digital humanities and information science. J. Assoc. Inf. Sci. Technol. 73, 268–287 (2022).

    Article 

    Google Scholar
     

  • Santana-Cordero, A. M. & Szabó, P. Exploring qualitative methods of historical ecology and their links with qualitative research. Int. J. Qual. Methods 18, 1609406919872112 (2019).

    Article 

    Google Scholar
     

  • Sun, J. et al. Automatic identification and morphological comparison of bivalve and brachiopod fossils based on deep learning. PeerJ. 11, e16200 (2023).

    Article 

    Google Scholar
     

  • Wei, G., Peng, C., Zhu, Q., Zhou, X. & Yang, B. Application of machine learning methods for paleoclimatic reconstructions from leaf traits. Int. J. Climatol. 41, E3249–E3262 (2021).

    Article 

    Google Scholar
     

  • Bledsoe, E. K. et al. Data rescue: saving environmental data from extinction. Proc. R. Soc. B: Biol. Sci. 289, 20220938 (2022).

    Article 

    Google Scholar
     

  • Knockaert, C. et al. Biodiversity data rescue in the framework of a long-term Kenya–Belgium cooperation in marine sciences. Sci. Data 6, 85 (2019).

    Article 

    Google Scholar
     

  • Rosi, E. J. et al. Give long-term datasets world heritage status. Science 378, 1180–1181 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Purgar, M., Glasziou, P., Klanjscek, T., Nakagawa, S. & Culina, A. Supporting study registration to reduce research waste. Nat. Ecol. Evol. 8, 1391–1399 (2024).

    Article 

    Google Scholar
     

  • Scott, S. L. et al. Documenting changing landscapes with rePhotoSA: a repeat photography and citizen science project in Southern Africa. Ecol. Inform. 64, 101390 (2021).

    Article 

    Google Scholar
     

  • Flowers, V., Frutos, C., MacKenzie, A. S., Fanning, R. & Fraser, E. E. Snap decisions: assessing participation and data quality in a citizen science program using repeat photography. Citizen Sci. Theory Practice 8, 62 (2023).

    Article 

    Google Scholar
     

  • Soul, L. C., Barclay, R. S., Bolton, A. & Wing, S. L. Fossil atmospheres: a case study of citizen science in question-driven palaeontological research. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170388 (2018).

    Article 

    Google Scholar
     

  • Froese, G. Z. L. et al. Coupling paraecology and hunter GPS self-follows to quantify village bushmeat hunting dynamics across the landscape scale. Afr. J. Ecol. 60, 229–249 (2022).

    Article 

    Google Scholar
     

  • Tribot, A.-S., Faget, D., Richard, T. & Changeux, T. The role of pre-19th century art in conservation biology: an untapped potential for connecting with nature. Biol. Conserv. 276, 109791 (2022).

    Article 

    Google Scholar
     

  • Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLoS ONE 7, e29715 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Guralnick, R., Walls, R. & Jetz, W. Humboldt Core—toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography 40, 001–012 (2017).


    Google Scholar
     

  • Nieto-Lugilde, D. et al. Time to better integrate paleoecological research infrastructures with neoecology to improve understanding of biodiversity long-term dynamics and to inform future conservation. Environ. Res. Lett. 16, 095005 (2021).

    Article 

    Google Scholar
     

  • Tengö, M. et al. Weaving knowledge systems in IPBES, CBD and beyond—lessons learned for sustainability. Curr. Opin. Environ. Sustain. 26–27, 17–25 (2017).

    Article 

    Google Scholar
     

  • Davis, A. & Wagner, J. R. Who knows? On the importance of identifying “experts” when researching local ecological knowledge. Hum. Ecol. 31, 463–489 (2003).

    Article 

    Google Scholar
     

  • Liboiron, M. Decolonizing geoscience requires more than equity and inclusion. Nat. Geosci. 14, 876–877 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Swanson, H. A. et al. History as grounds for interdisciplinarity: promoting sustainable woodlands via an integrative ecological and socio-cultural perspective. One Earth 4, 226–237 (2021).

    Article 

    Google Scholar
     

  • Svenning, J.-C., Kerr, M. R., Mungi, N. A., Ordonez, A. & Riede, F. Defining the anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action. One Earth 7, 1678–1681 (2024).

    Article 

    Google Scholar
     

  • Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).

    Article 

    Google Scholar
     

  • Perino, A. et al. Biodiversity post-2020: closing the gap between global targets and national-level implementation. Conserv. Lett. 15, e12848 (2022).

    Article 

    Google Scholar
     

  • Gwinn, N. E. & Rinaldo, C. The Biodiversity Heritage Library: sharing biodiversity literature with the world. IFLA J. 35, 25–34 (2009).

    Article 

    Google Scholar
     

  • Domínguez-Castro, F. et al. Dating historical droughts from religious ceremonies, the international pro pluvia rogation database. Sci. Data 8, 186 (2021).

    Article 

    Google Scholar
     

  • Buckland, P. I. SEAD – the Strategic Environmental Archaeology Database inter-linking multiproxy environmental data with archaeological investigations and ecology. In Archaeology in the Digital Era: Papers from the 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology (CAA), Southampton, 26-29 March 2012 (eds Chrysanthi, A. et al.) 320–331 (Amsterdam Univ. Press, 2014).

  • Guiterman, C. H. et al. The International Tree-Ring Data Bank at fifty: status of stewardship for future scientific discovery. Tree-Ring Res. 80, 13–18 (2024).

    Article 

    Google Scholar
     

  • Lawenda, M., Wiland-Szymańska, J., Nowak, M. M., Jędrasiak, D. & Jackowiak, B. The Adam Mickiewicz University Nature Collections IT system (AMUNATCOLL): metadata structure, database and operational procedures. Biodivers. Res. Conserv. 65, 35–48 (2022).

    Article 

    Google Scholar
     

  • Anderson, N. J. et al. Limnological and palaeolimnological studies of lakes in south-western Greenland. Geol. Greenl. Surv. Bull. 183, 68–74 (1999).

    Article 

    Google Scholar
     

  • Forman, R. T. T. & Russell, E. W. B. Evaluation of historical data in ecology. Bull. Ecol. Soc. Am. 64, 5–7 (1983).

    Article 

    Google Scholar
     

  • Reithmaier, T. in The Historical Ecology Handbook (eds Egan, D. & Howell, E. A.) 121–146 (Island Press, 2001).

  • Kaim, D. Land cover changes in the Polish Carpathians based on repeat photography. Carpath. J. Earth Environ. Sci. 12, 485–498 (2017).


    Google Scholar
     

  • Clavero, M., García-Reyes, A., Fernández-Gil, A., Revilla, E. & Fernández, N. On the misuse of historical data to set conservation baselines: wolves in Spain as an example. Biol. Conserv. 276, 109810 (2022).

    Article 

    Google Scholar