• Kuo, C. F. et al. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 11, 649–662 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Safiri, S. et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Arthritis Rheumatol. 72, 1916–1927 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am. J. Med. 125, 679–687 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Dalbeth, N. et al. Gout. Lancet 388, 2039–2052 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinon, F. et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabău, G. et al. Urate‐induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol. Rev. 294, 92–105 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tin, A. et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat. Genet. 51, 1459–1474 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakayama, A. et al. Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Ann. Rheum. Dis. 79, 657–665 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat. Commun. 6, 7041 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sulem, P. et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat. Genet. 43, 1127–1130 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalbeth, N. et al. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann. Rheum. Dis. 77, 1048–1052 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalbeth, N. et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann. Rheum. Dis. 74, 908–911 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Major, T. J. et al. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 14, 341–353 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Q. O. et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ. Cardiovasc. Genet. 3, 523–530 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanai, M. et al. Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. Cell Genom. 12, 100210 (2022).

    Article 

    Google Scholar
     

  • Yuan, S. et al. Genetically predicted sex hormone levels and health outcomes: phenome-wide Mendelian randomization investigation. Int. J. Epidemiol. 51, 1931–1942 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, C. et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakayama, A. et al. Common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility. Hum. Cell 26, 133–136 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, M. et al. Accelerated transcription of PRPS1 in X-linked overactivity of normal human phosphoribosylpyrophosphate synthetase.J. Biol. Chem. 274, 7284–7488 (1999).

    Article 

    Google Scholar
     

  • Halperin Kuhns, V. L. et al. Differential expression of renal urate transporters in male and female mice. FASEB J. 34, S1 (2020).

    Article 

    Google Scholar
     

  • Badii, M. et al. Urate-induced epigenetic modifications in myeloid cells. Arthritis Res. Ther. 23, 202 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Differential DNA methylation of networked signaling, transcriptional, innate and adaptive immunity, and osteoclastogenesis genes and pathways in gout. Arthritis Rheumatol. 72, 802–814 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 53, 1311–1321 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakaue, S. & Okada, Y. GREP: genome for REPositioning drugs. Bioinformatics 35, 3821–3823 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agrawal, A. et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood 140, 1094–1103 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gazal, S. et al. Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. Nat. Genet. 54, 827–836 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legrand-Poels, S. et al. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem. Pharmacol. 92, 131–141 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, X. et al. Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease. Genome Biol. 22, 198 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sibbons, C. M. et al. Polyunsaturated fatty acid biosynthesis involving Δ8 desaturation and differential DNA methylation of FADS2 regulates proliferation of human peripheral blood mononuclear cells. Front. Immunol. 9, 432 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gotfryd, K. et al. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat. Commun. 9, 4749 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Compan, V. et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37, 487–500 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chirayath, T. et al. The inflammation induced by monosodium urate and calcium pyrophosphate crystals depends on osmolarity and aquaporin channels. Arthritis Rheumatol. 74, S9 (2022).


    Google Scholar
     

  • Pearson, D. L. et al. Neonatal pulmonary hypertension: urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N. Engl. J. Med. 344, 1832–1838 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riksen, N. P. & Netea, M. G. Immunometabolic control of trained immunity. Mol. Asp. Med. 77, 100897 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Segovia, M. et al. Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation. Cancer Cell 35, 767–781 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, C. et al. Cholesterol homeostatic regulator SCAP–SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity 49, 842–856 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, R. et al. A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols. Science 371, eabb2224 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Role of NINJ1 in gout flare and potential as a drug target. J. Inflamm. Res. 15, 5611–5620 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sehgal, A., Irvine, K. M. & Hume, D. A. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis and tissue repair. Semin. Immunol. 54, 101509 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, J.-Y. & Zukin, R. S. REST, a master transcriptional factor in neurodegenerative disease. Curr. Opin. Neurobiol. 48, 193–200 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, A. et al. Novel genetic loci in early-onset gout derived from whole-genome sequencing of an adolescent gout cohort. Arthritis Rheumatol. https://doi.org/10.1002/art.42969 (2024).

  • Chang, W.-C. et al. Genetic variants of PPAR-γ coactivator 1B augment NLRP3-mediated inflammation in gouty arthritis. Rheumatology 56, 457–466 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Castel, S. E. et al. A vast resource of allelic expression data spanning human tissues. Genome Biol. 21, 234 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang, K. et al. IL-33 ameliorates the development of MSU-induced inflammation through expanding MDSCs-like cells. Front. Endocrinol. 10, 36 (2019).

    Article 

    Google Scholar
     

  • Cadzow, M. et al. Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank. Arthritis Res. Ther. 19, 181 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalbeth, N. et al. Survey definitions of gout for epidemiologic studies: comparison with crystal identification as the gold standard.Arthritis Care Res. 68, 1894–1898 (2016).

    Article 
    CAS 

    Google Scholar
     

  • He, B. et al. Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 159006 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basseville, A. et al. Histone deacetylase inhibitors influence chemotherapy transport by modulating expression and trafficking of a common polymorphic variant of the ABCG2 efflux transporter. Cancer Res. 72, 3642–3651 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuo, H. et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci. Transl. Med. 1, 5ra11 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wallace, M. C. et al. Association between ABCG2 rs2231142 and poor response to allopurinol: replication and meta-analysis. Rheumatology 57, 656–660 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeshita, T. et al. The contribution of polymorphism in the alcohol dehydrogenase β subunit to alcohol sensitivity in a Japanese population. Hum. Genet. 97, 409–413 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farrés, J. et al. Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. J. Biol. Chem. 269, 13854–13860 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Yamanaka, H. et al. Analysis of the genotypes for aldehyde dehydrogenase 2 in Japanese patients with primary gout. Adv. Exp. Med. Biol. 370, 53–56 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rees, M. et al. Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk. Diabetologia 55, 114–122 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, Z. et al. Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. Biochemistry 45, 7277–7288 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pirazzi, C. et al. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J. Hepatol. 57, 1276–1282 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allenspach, E. J. et al. The autoimmune risk R262W variant of the adaptor SH2B3 improves survival in sepsis. J. Immunol. 207, 2710–2719 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. LNK/SH2B3 loss of function promotes atherosclerosis and thrombosis. Circ. Res. 119, e91–e103 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiba, T. et al. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol. 67, 281–287 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jutabha, P. et al. Functional analysis of human sodium–phosphate transporter 4 (NPT4/SLC17A3) polymorphisms. J. Pharmacol. Sci. 115, 249–253 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuo, H. et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 83, 744–751 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurba, O. et al. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout. PLoS ONE 9, e107902 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall, S. C. et al. Critical role of zinc transporter (ZIP8) in myeloid innate immune cell function and the host response against bacterial pneumonia. J. Immunol. 207, 1357–1370 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujishiro, H. et al. Effects of individual amino acid mutations of zinc transporter ZIP8 on manganese- and cadmium-transporting activity. Biochem. Biophys. Res. Commun. 616, 26–32 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Türkmen, D. et al. Statin treatment effectiveness and the SLCO1B1*5 reduced function genotype: long‐term outcomes in women and men. Br. J. Clin. Pharmacol. 88, 3230–3240 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, B. et al. Identification of potential megalin/cubilin substrates using extensive proteomics quantification from kidney megalin-knockdown mice. AAPS J. 24, 109 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simonson, B. et al. DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Sci. Signal. 10, eaaf5967 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scoville, D. W. & Jetten, A. M. GLIS3: a critical transcription factor in islet β-cell generation. Cells 10, 3471 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adelmann, C. H. et al. MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Nature 588, 699–704 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, W. et al. POM121 inhibits the macrophage inflammatory response by impacting NF-κB P65 nuclear accumulation. Exp. Cell Res. 377, 17–23 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moon, J.-S. et al. ANT2 drives proinflammatory macrophage activation in obesity. JCI Insight 6, e147033 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghossoub, R. et al. Tetraspanin-6 negatively regulates exosome production. Proc. Natl Acad. Sci. USA 117, 5913–5922 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatt-Wessel, B. et al. Role of DGAT enzymes in triacylglycerol metabolism. Arch. Biochem. Biophys. 655, 1–11 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inoue, H. et al. γ-SNAP stimulates disassembly of endosomal SNARE complexes and regulates endocytic trafficking pathways. J. Cell Sci. 128, 2781–2794 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackenzie, I. S. et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet 396, 1745–1757 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kvale, M. N. et al. Genotyping informatics and quality control for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics 200, 1051–1060 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toyoda, Y. et al. SNP-based heritability estimates of gout and its subtypes determined by genome-wide association studies of clinically defined gout. Rheumatol. 62, e144–e146 (2023).

    Article 

    Google Scholar
     

  • Köttgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lindström, S. et al. A comprehensive survey of genetic variation in 20,691 subjects from four large cohorts. PLoS ONE 12, e0173997 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutin, N. T. et al. The evolution of a large biobank at Mass General Brigham. J. Pers. Med. 12, 1323 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, J. et al. Genetic architecture for susceptibility to gout in the KARE cohort study. J. Hum. Genet. 57, 379–384 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neogi, T. et al. 2015 gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatol. 67, 2557–2568 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 6, e1000993 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, K. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, J.-E. et al. SNPTracker: a swift tool for comprehensive tracking and unifying dbSNP rs IDs and genomic coordinates of massive sequence variants. G3 6, 205–207 (2016).

    Article 

    Google Scholar
     

  • Broad Institute GitHub Repository. Picard Toolkit broadinstitute.github.io/picard/ (2019).

  • Willer, C. J. et al. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, A. P. Transethnic meta‐analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comp. Biol. 9, e1003118 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. Hum. Mol. Genet. 22, 2303–2311 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Major, T. J. & Takei, R. LocusZoom-like plots for GWAS results (v2.1). Zenodo https://doi.org/10.5281/zenodo.5154379 (2021).

  • Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Leeuw et al. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comp. Biol. 11, e1004219 (2015).

    Article 

    Google Scholar
     

  • Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ormond, C. et al. Converting single nucleotide variants between genome builds: from cautionary tale to solution. Brief. Bioinform. 22, bbab069 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. et al. Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors. Nat. Commun. 12, 7117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pirinen, M. GWAS 3: Statistical Power www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/GWAS3.html (2023).

  • Boocock, J. et al. Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Hum. Mol. Genet. 29, 923–943 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fadason, T. et al. Physical interactions and expression quantitative traits loci identify regulatory connections for obesity and type 2 diabetes associated SNPs. Front. Genet. 8, 150 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harley, J. B. et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 50, 699–707 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • rikutakei. MerrimanLab/Gout_GWAS_Code: Gout_GWAS_code. Zenodo https://doi.org/10.5281/zenodo.13350995 (2024).