• Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

    Article 

    Google Scholar
     

  • Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).

    Article 

    Google Scholar
     

  • Allan, R. P. et al. Advances in understanding large‐scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14337 (2020).

  • Zhang, S. et al. Reconciling disagreement on global river flood changes in a warming climate. Nat. Clim. Chang. 12, 1160–1167 (2022).

    Article 

    Google Scholar
     

  • Zhou, S., Yu, B. & Zhang, Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 9, eabo1638 (2023).

    Article 

    Google Scholar
     

  • Gu, B., Zhou, S., Yu, B., Findell, K. L. & Lintner, B. R. Multifaceted changes in water availability with a warmer climate. npj Clim. Atmos. Sci. 8, 31 (2025).

    Article 

    Google Scholar
     

  • Budyko, M. I. Climate and Life (Academic Press, 1974).

  • Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article 

    Google Scholar
     

  • Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    Article 

    Google Scholar
     

  • Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Koutsoyiannis, D. Revisiting the global hydrological cycle: is it intensifying? Hydrol. Earth Syst. Sci. 24, 3899–3932 (2020).

    Article 

    Google Scholar
     

  • Milly, P. C. D. & Dunne, K. A. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change. J. Am. Water Resour. Assoc. 53, 822–838 (2017).

    Article 

    Google Scholar
     

  • Zaitchik, B. F., Rodell, M., Biasutti, M. & Seneviratne, S. I. Wetting and drying trends under climate change. Nat. Water 1, 502–513 (2023).

    Article 

    Google Scholar
     

  • Zhou, S., Yu, B., Huang, Y. & Wang, G. The complementary relationship and generation of the Budyko functions. Geophys. Res. Lett. 42, 1781–1790 (2015).

    Article 

    Google Scholar
     

  • Scheff, J., Coats, S. & Laguë, M. M. Why do the global warming responses of land‐surface models and climatic dryness metrics disagree? Earth’s Future 10, e2022EF002814 (2022).

    Article 

    Google Scholar
     

  • Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44 (2019).

    Article 

    Google Scholar
     

  • Zhou, S., Yu, B., Lintner, B. R., Findell, K. L. & Zhang, Y. Projected increase in global runoff dominated by land surface changes. Nat. Clim. Chang. 13, 442–449 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Scheff, J., Mankin, J. S., Coats, S. & Liu, H. CO2-plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environ. Res. Lett. 16, 034018 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Chang. 11, 38–44 (2021).

    Article 

    Google Scholar
     

  • Zhou, S. et al. Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks. Nat. Commun. 13, 5756 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Article 

    Google Scholar
     

  • Seneviratne, S. I. et al. Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 40, 5212–5217 (2013).

    Article 

    Google Scholar
     

  • Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, L. et al. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 23, 359–369 (2013).

    Article 

    Google Scholar
     

  • Zhang, K., Kimball, J. S. & Running, S. W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 3, 834–853 (2016).

    Article 

    Google Scholar
     

  • Kim, Y., Garcia, M. & Johnson, M. S. Land–atmosphere coupling constrains increases to potential evaporation in a warming climate: implications at local and global scales. Earth’s Future 11, e2022EF002886 (2023).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Future global streamflow declines are probably more severe than previously estimated. Nat. Water 1, 261–271 (2023).

    Article 

    Google Scholar
     

  • Yang, H. & Yang, D. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff: derivation of climate elasticity of runoff. Water Resour. Res. 47, W07526 (2011).

    Article 

    Google Scholar
     

  • Zhou, S. et al. A new method to partition climate and catchment effect on the mean annual runoff based on the Budyko complementary relationship. Water Resour. Res. 52, 7163–7177 (2016).

    Article 

    Google Scholar
     

  • Shuttleworth, W. J. In Handbook of Hydrology (McGraw-Hill Education, 1993).

  • Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements (Food and Agriculture Organization of the United Nations, 1998).

  • Zhou, S. & Yu, B. Physical basis of the potential evapotranspiration and its estimation over land. J. Hydrol. 641, 131825 (2024).

    Article 

    Google Scholar
     

  • Zhou, S. & Yu, B. Reconciling the discrepancy in projected global dryland expansion in a warming world. Glob. Change Biol. 31, e70102 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Article 

    Google Scholar
     

  • Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Brutsaert, W. A generalized complementary principle with physical constraints for land‐surface evaporation. Water Resour. Res. 51, 8087–8093 (2015).

    Article 

    Google Scholar
     

  • Szilagyi, J. On the inherent asymmetric nature of the complementary relationship of evaporation. Geophys. Res. Lett. 34, L02405 (2007).

    Article 

    Google Scholar
     

  • Pastorello, G. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article 

    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar
     

  • Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).

    Article 

    Google Scholar
     

  • Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev. 100, 81–92 (1972).

    Article 

    Google Scholar
     

  • McColl, K. A., Roderick, M. L., Berg, A. & Scheff, J. The terrestrial water cycle in a warming world. Nat. Clim. Chang. 12, 604–606 (2022).

    Article 

    Google Scholar
     

  • Berg, A. Bridging the gap between simple metrics and model simulations of climate change impacts on land hydrology. Earth’s Future 10, e2022EF003259 (2022).

    Article 

    Google Scholar
     

  • Sun, R., Hernández, F., Liang, X. & Yuan, H. A calibration framework for high-resolution hydrological models using a multiresolution and heterogeneous strategy. Water Resour. Res. 56, e2019WR026541 (2020).

    Article 

    Google Scholar
     

  • Pandi, D., Kothandaraman, S. & Kuppusamy, M. Hydrological models: a review. Int. J. Hydrol. Sci. Technol. 12, 223–242 (2021).

    Article 

    Google Scholar
     

  • Ma, N., Szilagyi, J. & Zhang, Y. Calibration‐free complementary relationship estimates terrestrial evapotranspiration globally. Water Resour. Res. 57, e2021WR029691 (2021).

    Article 

    Google Scholar
     

  • Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Wei, H. et al. Direct vegetation response to recent CO2 rise shows limited effect on global streamflow. Nat. Commun. 15, 9423 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, S. et al. Large divergence in tropical hydrological projections caused by model spread in vegetation responses to elevated CO2. Earth’s Future 10, e2021EF002457 (2022).

    Article 

    Google Scholar
     

  • Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).

    Article 

    Google Scholar
     

  • Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Chang. 11, 331–337 (2021).

    Article 

    Google Scholar
     

  • Wells, N., Goddard, S. & Hayes, M. J. A self-calibrating palmer drought severity index. J. Clim. 17, 2335–2351 (2004).

    Article 

    Google Scholar
     

  • Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article 

    Google Scholar
     

  • Free vector and raster map data. Natural Earth http://www.naturalearthdata.com (2024).

  • Chow, V. T., Maidment, D. R. & Mays, L. W. Applied Hydrology (McGraw-Hill Book Company, 1988).

  • Penman, H. L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Series A 192, 120–145 (1948).

  • Qualls, R. J. & Crago, R. D. Graphical interpretation of wet surface evaporation equations. Water Resour. Res. 56, e2019WR026766 (2020).

    Article 

    Google Scholar
     

  • Yang, H., Yang, D., Lei, Z. & Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 44, W03410 (2008).

    Article 

    Google Scholar
     

  • Padrón, R. S., Gudmundsson, L., Greve, P. & Seneviratne, S. I. Large-scale controls of the surface water balance over land: insights from a systematic review and meta-analysis: review of surface water balance controls. Water Resour. Res. 53, 9659–9678 (2017).

    Article 

    Google Scholar
     

  • Xu, X., Liu, W., Scanlon, B. R., Zhang, L. & Pan, M. Local and global factors controlling water–energy balances within the Budyko framework. Geophys. Res. Lett. 40, 6123–6129 (2013).

    Article 

    Google Scholar
     

  • Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, S. Neglecting land–atmosphere feedbacks overestimates climate-driven increases in evapotranspiration. Zenodo https://doi.org/10.5281/zenodo.16730362 (2025).