• Fogg, C. et al. The dynamics of frailty development and progression in older adults in primary care in England (2006–2017): a retrospective cohort profile. BMC Geriatr. 22, 30 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, G., Iliffe, S. & Walters, K. Frailty index as a predictor of mortality: a systematic review and meta-analysis. Age Ageing 47, 193–200 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Park, C. M. et al. Frailty and hospitalization-associated disability after pneumonia: a prospective cohort study. BMC Geriatr. 21, 111 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Caoimh, R. et al. Prevalence of frailty in 62 countries across the world: a systematic review and meta-analysis of population-level studies. Age Ageing 50, 96–104 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Young, A. C. M., Glaser, K., Spector, T. D. & Steves, C. J. The identification of hereditary and environmental determinants of frailty in a cohort of UK twins. Twin Res. Hum. Genet. 19, 600–609 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Mitnitski, A. B., Mogilner, A. J. & Rockwood, K. Accumulation of deficits as a proxy measure of aging. Sci. World J. 1, 323–336 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A 56, M146–M157 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Howlett, S. E., Rutenberg, A. D. & Rockwood, K. The degree of frailty as a translational measure of health in aging. Nat. Aging 1, 651–665 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ritchie, S. J., Tucker-Drob, E. M., Starr, J. M. & Deary, I. J. Do cognitive and physical functions age in concert from age 70 to 76? Evidence from the Lothian Birth Cohort 1936. Span. J. Psychol. 19, E90 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Association between physical, psychological and social frailty and health-related quality of life among older people. Eur. J. Public Health 29, 936–942 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lachmann, R. et al. The accumulation of deficits approach to describe frailty. PLoS ONE 14, e0223449 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pridham, G., Rockwood, K. & Rutenberg, A. Efficient representations of binarized health deficit data: the frailty index and beyond. Geroscience 45, 1687–1711 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Trpchevska, N. et al. Genome-wide association meta-analysis identifies 48 risk variants and highlights the role of the stria vascularis in hearing loss. Am. J. Hum. Genet. 109, 1077–1091 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Watanabe, K. et al. Genome-wide meta-analysis of insomnia prioritizes genes associated with metabolic and psychiatric pathways. Nat. Genet. 54, 1125–1132 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jones, G. et al. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat. Commun. 12, 654 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Atkins, J. L. et al. A genome-wide association study of the frailty index highlights brain pathways in ageing. Aging Cell 20, e13459 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ye, Y. et al. A genome-wide association study of frailty identifies significant genetic correlation with neuropsychiatric, cardiovascular, and inflammation pathways. Geroscience 45, 2511–2523 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pebrel-Richard, C. et al. An unusual clinical severity of 16p11.2 deletion syndrome caused by unmasked recessive mutation of CLN3. Eur. J. Hum. Genet. 22, 369–373 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liotta, G. et al. Exploratory factor analysis (EFA) of the Short Functional Geriatric Evaluation (SFGE) to assess the multidimensionality of frailty in community-dwelling older adults. Int. J. Environ. Res. Public Health 20, 4129 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, L. et al. Frailty or frailties: exploring frailty index subdimensions in the English Longitudinal Study of Ageing. J. Epidemiol. Community Health 78, 609–615 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Soysal, P. et al. Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res. Rev. 31, 1–8 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pothier, K., Gana, W., Bailly, N. & Fougère, B. Associations between frailty and inflammation, physical, and psycho-social health in older adults: a systematic review. Front. Psychol. 13, 805501 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Z. et al. C-reactive protein and white blood cell are associated with frailty progression: a longitudinal study. Immun. Ageing 19, 29 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, C.-M., Chao, C.-T., Chen, S.-I., Han, D.-S. & Huang, K.-C. Elevated red cell distribution width is independently associated with a higher frailty risk among 2,932 community-dwelling older adults. Front. Med. 7, 470 (2020).

    Article 

    Google Scholar
     

  • Iwai-Saito, K., Shobugawa, Y., Aida, J. & Kondo, K. Frailty is associated with susceptibility and severity of pneumonia in older adults (a JAGES multilevel cross-sectional study). Sci. Rep. 11, 7966 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sablerolles, R. S. G. et al. Association between Clinical Frailty Scale score and hospital mortality in adult patients with COVID-19 (COMET): an international, multicentre, retrospective, observational cohort study. Lancet Healthy Longev. 2, e163–e170 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chao, C.-T., Lee, S.-Y., Wang, J., Chien, K.-L. & Huang, J.-W. Frailty increases the risk for developing urinary tract infection among 79,887 patients with diabetic mellitus and chronic kidney disease. BMC Geriatr. 21, 349 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verschoor, C. P. et al. Epigenetic age is associated with baseline and 3-year change in frailty in the Canadian Longitudinal Study on Aging. Clin. Epigenetics 13, 163 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, X. et al. Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults. Nat. Commun. 13, 5269 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Materna, S. C., Sinha, T., Barnes, R. M., Lammerts van Bueren, K. & Black, B. L. Cardiovascular development and survival require Mef2c function in the myocardial but not the endothelial lineage. Dev. Biol. 445, 170–177 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Anderson, C. M. et al. Myocyte enhancer factor 2C function in skeletal muscle is required for normal growth and glucose metabolism in mice. Skelet. Muscle 5, 7 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooley Coleman, J. A. et al. Comprehensive investigation of the phenotype of MEF2C-related disorders in human patients: a systematic review. Am. J. Med. Genet. A 185, 3884–3894 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Barker, S. J. et al. MEF2 is a key regulator of cognitive potential and confers resilience to neurodegeneration. Sci. Transl. Med. 13, eabd7695 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schwartzentruber, J. et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 53, 392–402 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Parfenov, V. A., Zakharov, V. V., Kabaeva, A. R. & Vakhnina, N. V. Subjective cognitive decline as a predictor of future cognitive decline: a systematic review. Dement. Neuropsychol. 14, 248–257 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, P.-Y. et al. Physical frailty, genetic predisposition, and incident dementia: a large prospective cohort study. Transl. Psychiatry 14, 212 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mullin, D. S., Gadd, D., Russ, T. C., Luciano, M. & Muniz-Terrera, G. Motoric cognitive risk syndrome trajectories and incident dementia over 10 years. Cereb. Circ. Cogn. Behav. 5, 100178 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholson, K. et al. Prevalence of multimorbidity and polypharmacy among adults and older adults: a systematic review. Lancet Healthy Longev. 5, e287–e296 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Rosoff, D. B. et al. Multivariate genome-wide analysis of aging-related traits identifies novel loci and new drug targets for healthy aging. Nat. Aging 3, 1020–1035 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Grunewald, M. et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 373, eabc8479 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sierra, F. & Kohanski, R. Geroscience and the trans-NIH Geroscience Interest Group, GSIG. Geroscience 39, 1–5 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, E. H. et al. Sex differences in frailty: a systematic review and meta-analysis. Exp. Gerontol. 89, 30–40 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sun, L., Wang, Z., Lu, T., Manolio, T. A. & Paterson, A. D. eXclusionarY: 10 years later, where are the sex chromosomes in GWASs? Am. J. Hum. Genet. 110, 903–912 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sepehri, K. et al. A computerized frailty assessment tool at points-of-care: development of a standalone electronic Comprehensive Geriatric Assessment/Frailty Index (eFI-CGA). Front. Public Health 8, 89 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Purves, K. L. et al. A major role for common genetic variation in anxiety disorders. Mol. Psychiatry 25, 3292–3303 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 10, 3503 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trajanoska, K. et al. Genetic basis of falling risk susceptibility in the UK Biobank Study. Commun. Biol. 3, 543 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kemp, J. P. et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat. Genet. 49, 1468–1475 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bonfiglio, F. et al. GWAS of stool frequency provides insights into gastrointestinal motility and irritable bowel syndrome. Cell Genom. 1, 100069 (2021).

    Article 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).

    Article 

    Google Scholar
     

  • Ruscio, J. & Roche, B. Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure. Psychol. Assess. 24, 282–292 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ximénez, C., Revuelta, J. & Castañeda, R. What are the consequences of ignoring cross-loadings in bifactor models? A simulation study assessing parameter recovery and sensitivity of goodness-of-fit indices. Front. Psychol. 13, 923877 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eid, M., Krumm, S., Koch, T. & Schulze, J. Bifactor models for predicting criteria by general and specific factors: problems of nonidentifiability and alternative solutions. J. Intell. 6, 42 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • van Rheenen, W. et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat. Genet. 53, 1636–1648 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Persyn, E. et al. Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nat. Commun. 11, 2175 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bell, S., Tozer, D. J. & Markus, H. S. Genome-wide association study of the human brain functional connectome reveals strong vascular component underlying global network efficiency. Sci. Rep. 12, 14938 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kaufmann, T. et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci. 22, 1617–1623 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fürtjes, A. E. et al. General dimensions of human brain morphometry inferred from genome-wide association data. Hum. Brain Mapp. 44, 3311–3323 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wainberg, M. et al. Genetic architecture of the structural connectome. Nat. Commun. 15, 1962 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Traylor, M. et al. Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurol. 20, 351–361 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mishra, A. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611, 115–123 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Timmers, P. R. et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. eLife 8, e39856 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deelen, J. et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat. Commun. 10, 3669 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nethander, M. et al. Assessment of the genetic and clinical determinants of hip fracture risk: genome-wide association and Mendelian randomization study. Cell Rep. Med. 3, 100776 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Butler-Laporte, G. et al. Increasing serum iron levels and their role in the risk of infectious diseases: a Mendelian randomization approach. Int. J. Epidemiol. 52, 1163–1174 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin, M. G. et al. Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure. Nat. Commun. 13, 6914 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pathak, G. A. et al. A first update on mapping the human genetic architecture of COVID-19. Nature 608, E1–E10 (2022).

    Article 

    Google Scholar
     

  • Said, S. et al. Genetic analysis of over half a million people characterises C-reactive protein loci. Nat. Commun. 13, 2198 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stanzick, K. J. et al. Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals. Nat. Commun. 12, 4350 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lagou, V. et al. GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification. Nat. Genet. 55, 1448–1461 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bell, S. et al. A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun. Biol. 4, 156 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mallard, T. T. et al. Multivariate GWAS of psychiatric disorders and their cardinal symptoms reveal two dimensions of cross-cutting genetic liabilities. Cell Genom. 2, 100140 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grotzinger, A. D. et al. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. Nat. Genet. 54, 548–559 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ardlie, K. G. et al. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article 

    Google Scholar
     

  • Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Grotzinger, A. D. et al. Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis. Nat. Commun. 14, 946 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Grotzinger, A. D., de la Fuente, J., Davies, G., Nivard, M. G. & Tucker-Drob, E. M. Transcriptome-wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits. Nat. Commun. 13, 6280 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguet, F. et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article 
    CAS 

    Google Scholar
     

  • de Leeuw, C. A., Stringer, S., Dekkers, I. A., Heskes, T. & Posthuma, D. Conditional and interaction gene-set analysis reveals novel functional pathways for blood pressure. Nat. Commun. 9, 3768 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat. Commun. 9, 918 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun. 10, 5086 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, S. W., Mak, T. S.-H. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 15, 2759–2772 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Krapohl, E. et al. Multi-polygenic score approach to trait prediction. Mol. Psychiatry 23, 1368–1374 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jung, H. et al. Integration of risk factor polygenic risk score with disease polygenic risk score for disease prediction. Commun. Biol. 7, 180 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pain, O. et al. Evaluation of polygenic prediction methodology within a reference-standardized framework. PLoS Genet. 17, e1009021 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dickson, S. P. et al. GenoRisk: a polygenic risk score for Alzheimer’s disease. Alzheimers Dement. 7, e12211 (2021).


    Google Scholar
     

  • Flint, J. P. et al. Multi-polygenic prediction of frailty highlights chronic pain and educational attainment as key risk and protective factors. Preprint at medRxiv https://doi.org/10.1101/2024.05.31.24308260 (2024).

  • Foote, I. Frailty-multivariate-GWAS: release for Zenodo. Zenodo https://doi.org/10.5281/zenodo.15654248 (2025).