• Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article 

    Google Scholar
     

  • Inouye, D. W. Climate change and phenology. WIREs Clim. Change 13, e764 (2022).

    Article 

    Google Scholar
     

  • Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12, 343–351 (2006).

    Article 

    Google Scholar
     

  • Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mayor, S. J. et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci. Rep. 7, 1902 (2017).

    Article 

    Google Scholar
     

  • Robertson, E. P. et al. Decoupling of bird migration from the changing phenology of spring green-up. Proc. Natl Acad. Sci. USA 121, e2308433121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Belitz, M. W. et al. Potential for bird–insect phenological mismatch in a tri-trophic system. J. Anim. Ecol. 94, 717–728 (2025).

    Article 

    Google Scholar
     

  • Culp, L. A., Cohen, E. B., Scarpignato, A. L., Thogmartin, W. E. & Marra, P. P. Full annual cycle climate change vulnerability assessment for migratory birds. Ecosphere 8, e01565 (2017).

    Article 

    Google Scholar
     

  • Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28, 2467–2473 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B 278, 835–842 (2010).

    Article 

    Google Scholar
     

  • Iler, A. M., CaraDonna, P. J., Forrest, J. R. K. & Post, E. Demographic consequences of phenological shifts in response to climate change. Ann. Rev. Ecol. Evol. Syst. 52, 221–245 (2021).

    Article 

    Google Scholar
     

  • Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. B 277, 1259–1266 (2009).

    Article 

    Google Scholar
     

  • Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. & Post, E. The effects of phenological mismatches on demography. Philos. Trans. R. Soc. B 365, 3177–3186 (2010).

    Article 

    Google Scholar
     

  • Lameris, T. K. et al. Migratory birds advance spring arrival and egg-laying in the Arctic, mostly by travelling faster. Glob. Change Biol. 31, e70158 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Rakhimberdiev, E. et al. Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird. Nat. Commun. 9, 4263 (2018).

    Article 

    Google Scholar
     

  • Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).

    Article 

    Google Scholar
     

  • Lameris, T. K. et al. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification. Glob. Change Biol. 23, 4058–4067 (2017).

    Article 

    Google Scholar
     

  • Amaral, B. R., Youngflesh, C., Tingley, M. & Miller, D. A. W. Shifting gears in a shifting climate: birds adjust migration speed in response to spring vegetation green-up. Divers. Distrib. 31, e70033 (2025).

    Article 

    Google Scholar
     

  • Conklin, J. R., Lisovski, S. & Battley, P. F. Advancement in long-distance bird migration through individual plasticity in departure. Nat. Commun. 12, 4780 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Visser, M. E., Perdeck, A. C., Van Balen, J. H. & Both, C. Climate change leads to decreasing bird migration distances. Glob. Change Biol. 15, 1859–1865 (2009).

    Article 

    Google Scholar
     

  • Nuijten, R. J. M., Wood, K. A., Haitjema, T., Rees, E. C. & Nolet, B. A. Concurrent shifts in wintering distribution and phenology in migratory swans: individual and generational effects. Glob. Change Biol. 26, 4263–4275 (2020).

    Article 

    Google Scholar
     

  • Alerstam, T. & Lindström, Å. in Bird Migration (ed. Gwinner, E.) 331–351 (Springer, 1990).

  • Hedenström, A. & Alerstam, T. How fast can birds migrate? J. Avian Biol. 29, 424–432 (1998).

    Article 

    Google Scholar
     

  • Lindström, Å., Alerstam, T. & Hedenström, A. Faster fuelling is the key to faster migration. Nat. Clim. Change 9, 288–289 (2019).

    Article 

    Google Scholar
     

  • Evans, S. R. & Bearhop, S. Variation in movement strategies: capital versus income migration. J. Anim. Ecol. 91, 1961–1974 (2022).

    Article 

    Google Scholar
     

  • Boom, M. P. et al. Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese. Oecologia 202, 287–298 (2023).

    Article 

    Google Scholar
     

  • Lameris, T. K. et al. Nocturnal foraging lifts time constraints in winter for migratory geese but hardly speeds up fueling. Behav. Ecol. 32, 539–552 (2021).

    Article 

    Google Scholar
     

  • Dokter, A. M. et al. Body stores persist as fitness correlate in a long-distance migrant released from food constraints. Behav. Ecol. 29, 1157–1166 (2018).

    Article 

    Google Scholar
     

  • Prins, H. H., Th & Ydenberg, R. C. Vegetation growth and a seasonal habitat shift of the barnacle goose (Branta leucopsis). Oecologia 66, 122–125 (1985).

    Article 

    Google Scholar
     

  • Ouwehand, J. et al. Experimental food supplementation at African wintering sites allows for earlier and faster fuelling and reveals large flexibility in spring migration departure in pied flycatchers. Ardea 111, 343–370 (2023).

    Article 

    Google Scholar
     

  • Scott, I., Mitchell, P. I. & Evans, P. R. Seasonal changes in body mass, body composition and food requirements in wild migratory birds. Proc. Nutr. Soc. 53, 521–531 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Ely, C. R. & Raveling, D. G. Body composition and weight dynamics of wintering greater white-fronted geese. J. Wildl. Manag. 53, 80–87 (1989).

    Article 

    Google Scholar
     

  • Duijns, S. et al. Body condition explains migratory performance of a long-distance migrant. Proc. R. Soc. B 284, 20171374 (2017).

    Article 

    Google Scholar
     

  • Ebbinge, B. S. & Spaans, B. The importance of body reserves accumulated in spring staging areas in the temperate zone for breeding in dark-bellied brent geese Branta b. bernicla in the high Arctic. J. Avian Biol. 26, 105–113 (1995).

    Article 

    Google Scholar
     

  • Muggeo, V. M. R. segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).

  • van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Article 

    Google Scholar
     

  • Alerstam, T. & Högstedt, G. Spring predictability and leap-frog migration. Ornis Scand. 11, 196–200 (1980).

    Article 

    Google Scholar
     

  • Kölzsch, A. et al. Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. J. Anim. Ecol. 84, 272–283 (2015).

    Article 

    Google Scholar
     

  • Si, Y. et al. Do Arctic breeding geese track or overtake a green wave during spring migration? Sci. Rep. 5, 8749 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bell, F. et al. Individuals departing non-breeding areas early achieve earlier breeding and higher breeding success. Sci. Rep. 14, 4075 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dossman, B. C., Rodewald, A. D., Studds, C. E. & Marra, P. P. Migratory birds with delayed spring departure migrate faster but pay the costs. Ecology 104, e3938 (2023).

    Article 

    Google Scholar
     

  • English, W. B. et al. The influence of migration timing and local conditions on reproductive timing in Arctic-breeding birds. Ecol. Evol. 15, e70610 (2025).

    Article 
    CAS 

    Google Scholar
     

  • van Gils, J. A. et al. Longer guts and higher food quality increase energy intake in migratory swans. J. Anim. Ecol. 77, 1234–1241 (2008).

    Article 

    Google Scholar
     

  • Kvist, A. & Lindström, Å. Maximum daily energy intake: it takes time to lift the metabolic ceiling. Phys. Biochem. Zool. 73, 30–36 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Dokter, A. M. et al. Agricultural pastures challenge the attractiveness of natural saltmarsh for a migratory goose. J. Appl. Ecol. 55, 2707–2718 (2018).

    Article 

    Google Scholar
     

  • Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B 278, 3437–3443 (2011).

    Article 

    Google Scholar
     

  • Lameris, T. et al. Sufficient food is critical for a long-distant migratory shorebird to advance migration phenology. Authorea https://doi.org/10.22541/au.174343332.23806959/v1 (2025).

  • Pot, M. T. et al. Wintering geese trade-off energetic gains and costs when switching from agricultural to natural habitats. Ardea 107, 183–196 (2019).

    Article 

    Google Scholar
     

  • Eichhorn, G., Meijer, Ha. J., Oosterbeek, K. & Klaassen, M. Does agricultural food provide a good alternative to a natural diet for body store deposition in geese? Ecosphere 3, art35 (2012).

    Article 

    Google Scholar
     

  • Lameris, T. K. et al. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology. Ecol. Evol. 7, 2652–2660 (2017).

    Article 

    Google Scholar
     

  • Tombre, I. M. et al. The onset of spring and timing of migration in two arctic nesting goose populations: the pink-footed goose Anser bachyrhynchus and the barnacle goose Branta leucopsis. J. Avian Biol. 39, 691–703 (2008).

    Article 

    Google Scholar
     

  • Van Wijk, R. E. et al. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121, 655–664 (2011).

    Article 

    Google Scholar
     

  • Nuijten, R. J. M. et al. The exception to the rule: retreating ice front makes Bewick’s swans Cygnus columbianus bewickii migrate slower in spring than in autumn. J. Avian Biol. 45, 113–122 (2014).

    Article 

    Google Scholar
     

  • Lisovski, S. et al. Predicting resilience of migratory birds to environmental change. Proc. Natl Acad. Sci. USA 121, e2311146121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).

    Article 

    Google Scholar
     

  • Callaghan, T. V. et al. The changing face of Arctic snow cover: a synthesis of observed and projected changes. AMBIO 40, 17–31 (2011).

    Article 

    Google Scholar
     

  • Linssen, H., van Loon, E. E., Shamoun-Baranes, J. Z., Nuijten, R. J. M. & Nolet, B. A. Migratory swans individually adjust their autumn migration and winter range to a warming climate. Glob. Change Biol. 29, 6888–6899 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lewin, P. J. et al. Climate change drives migratory range shift via individual plasticity in shearwaters. Proc. Natl Acad. Sci. USA 121, e2312438121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Change Biol. 14, 1959–1972 (2008).

    Article 

    Google Scholar
     

  • Jonzén, N. et al. Rapid advance of spring arrival dates in long-distance migratory birds. Science 312, 1959–1961 (2006).

    Article 

    Google Scholar
     

  • Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).

    Article 
    CAS 

    Google Scholar
     

  • McLaren, J. D., Shamoun-Baranes, J. & Bouten, W. Stop early to travel fast: modelling risk-averse scheduling among nocturnally migrating birds. J. Theor. Biol. 316, 90–98 (2013).

    Article 

    Google Scholar
     

  • Schmaljohann, H., Eikenaar, C. & Sapir, N. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol. Rev. 97, 1231–1252 (2022).

    Article 

    Google Scholar
     

  • Madsen, J. Spring migration strategies in pink-footed geese Anser brachyrhynchus and consequences for spring fattening and fecundity. Ardea 89, 43–55 (2001).

  • Shamoun-Baranes, J. & Camphuysen, K. C. J. An annual cycle perspective on energetics and locomotion of migratory animals. J. Exp. Biol. 228, JEB248053 (2025).

    Article 

    Google Scholar
     

  • Ebbinge, B. S. et al. The website geese.org, an interactive database to report marked waterfowl. Goose Bull. 25, 11–18 (2020).

  • Madsen, J., Tjørnløv, R. S., Frederiksen, M., Mitchell, C. & Sigfússon, A. Th. Connectivity between flyway populations of waterbirds: assessment of rates of exchange, their causes and consequences. J. Appl. Ecol. 51, 183–193 (2014).

    Article 

    Google Scholar
     

  • Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).

    Article 

    Google Scholar
     

  • Boom, M. P. et al. Earlier springs increase goose breeding propensity and nesting success at Arctic but not at temperate latitudes. J. Anim. Ecol. 92, 2399–2411 (2023).

    Article 

    Google Scholar
     

  • Moonen, S. et al. Sharing habitat: effects of migratory barnacle geese density on meadow breeding waders. J. Nat. Conserv. 72, 126355 (2023).

    Article 

    Google Scholar
     

  • Kölzsch, A. et al. Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos 125, 1496–1507 (2016).

    Article 

    Google Scholar
     

  • Schreven, K. H. T., Stolz, C., Madsen, J. & Nolet, B. A. Nesting attempts and success of Arctic-breeding geese can be derived with high precision from accelerometry and GPS-tracking. Anim. Biotelem. 9, 25 (2021).

    Article 

    Google Scholar
     

  • Nuijten, R. J. M. & Nolet, B. Chains as strong as the weakest link: remote assessment of aquatic resource use on spring migration by Bewick’s swans. Avian Conserv. Ecol. 15, 14 (2020).

  • Linssen, H. et al. Tracking data as an alternative to resighting data for inferring population ranges. J. Biogeogr. 51, 2356–2368 (2024).

    Article 

    Google Scholar
     

  • Kays, R. et al. The Movebank system for studying global animal movement and demography. Methods Ecol. Evol. 13, 419–431 (2022).

    Article 

    Google Scholar
     

  • Kranstauber, B., Safi, K. & Scharf, A. K. move2: R package for processing movement data. Methods Ecol. Evol. 15, 1561–1567 (2024).

    Article 

    Google Scholar
     

  • Spaans, B., Van’t Hoff, K. (C.A), der Veer, W. V. & Ebbinge, B. S. The significance of female body stores for egg laying and incubation in dark-bellied brent geese Branta bernicla bernicla. Ardea 95, 3–15 (2007).

  • Vermote, E. & Wolfe, R. MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid V061 (NASA EOSDIS Land Processes Distributed Active Archive Center, accessed 21 January 2025); https://doi.org/10.5067/MODIS/MOD09GA.061

  • Aybar, C., Wu, Q., Bautista, L., Yali, R. & Barja, A. rgee: an R package for interacting with Google Earth Engine. J. Open Source Softw. 5, 2272 (2020).

    Article 

    Google Scholar
     

  • Versluijs, T. S. L. RGEE_Snowmelt (v1.3.0). Zenodo https://doi.org/10.5281/zenodo.8229031 (2025).

  • Ackerman, S. MODIS Atmosphere L2 Cloud Mask Product (NASA MODIS Adaptive Processing System, 2015); https://doi.org/10.5067/MODIS/MOD35_L2.006

  • Carroll, M. et al. MOD44W MODIS/Terra Land Water Mask Derived From MODIS and SRTM L3 Global 250 m SIN Grid V006 (NASA EOSDIS Land Processes Distributed Active Archive Center, accessed 21 January 2025); https://doi.org/10.5067/MODIS/MOD44W.006

  • Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 28, 9–22 (1989).

    Article 

    Google Scholar
     

  • Hall, D. K., Riggs, G. A. & Salomonson, V. V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 54, 127–140 (1995).

    Article 

    Google Scholar
     

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar
     

  • Akaike, H. in Second International Symposium on Information Theory (eds Petrov, B. N. & Csaki, B. F.) 267–281 (Akadémiai Kiadó, 1973).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  • Linssen, H. et al. Analysis scripts and snowmelt data for ‘Scope for waterfowl to speed up migration to a warming Arctic’. figshare https://doi.org/10.21942/uva.28597007 (2025).