• Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Pirrone, N. et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10, 5951–5964 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Obrist, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201–204 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Streets, D. G. et al. Total mercury released to the environment by human activities. Environ. Sci. Technol. 51, 5969–5977 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Selin, N. E. et al. Global 3‐D land–ocean–atmosphere model for mercury: present‐day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Glob. Biogeochem. Cycles 22, GB2011 (2008).


    Google Scholar
     

  • Amos, H. M., Jacob, D. J., Streets, D. G. & Sunderland, E. M. Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycles 27, 410–421 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lamborg, C. H. et al. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512, 65–68 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sonke, J. E. et al. Global change effects on biogeochemical mercury cycling. Ambio 52, 853–876 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mason, R. P., Fitzgerald, W. F. & Morel, F. M. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim. Cosmochim. Acta 58, 3191–3198 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Mason, R. P. & Sheu, G. R. Role of the ocean in the global mercury cycle. Glob. Biogeochem. Cycles 16, 40-1–40-14 (2002).

    Article 

    Google Scholar
     

  • Lamborg, C. H., Fitzgerald, W. F., O’Donnell, J. & Torgersen, T. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim. Cosmochim. Acta 66, 1105–1118 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Semeniuk, K. & Dastoor, A. Development of a global ocean mercury model with a methylation cycle: outstanding issues. Glob. Biogeochem. Cycles 31, 400–433 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kawai, T., Sakurai, T. & Suzuki, N. Application of a new dynamic 3-D model to investigate human impacts on the fate of mercury in the global ocean. Environ. Modell. Softw. 124, 104599 (2020).

    Article 

    Google Scholar
     

  • Global Mercury Assessment 2018 (UNEP, 2019).

  • Cossa, D. et al. (eds) Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances 229–247 (Springer, 1996).

  • Sunderland, E. M. & Mason, R. P. Human impacts on open ocean mercury concentrations. Glob. Biogeochem. Cycles 21, GB4022 (2007).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans. Glob. Biogeochem. Cycles 29, 854–864 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Outridge, P. M., Mason, R., Wang, F., Guerrero, S. & Heimbürger-Boavida, L. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 11466–11477 (2018).

    CAS 

    Google Scholar
     

  • Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lavoie, R. A., Bouffard, A., Maranger, R. & Amyot, M. Mercury transport and human exposure from global marine fisheries. Sci. Rep. 8, 6705 (2018).

    Article 

    Google Scholar
     

  • Chen, L. et al. Mass budget of mercury (Hg) in the seawater of Eastern China Marginal Seas: importance of the sediment–water transport processes. Environ. Sci. Technol. 56, 11418–11428 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hammerschmidt, C. R. & Fitzgerald, W. F. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ. Sci. Technol. 38, 1487–1495 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Liu, B. et al. Disturbance impacts on mercury dynamics in northern Gulf of Mexico sediments. J. Geophys. Res. Biogeosci. 114, G00C07 (2009).

    Article 

    Google Scholar
     

  • Seelen, E. A., Massey, G. M. & Mason, R. P. Role of sediment resuspension on estuarine suspended particulate mercury dynamics. Environ. Sci. Technol. 52, 7736–7744 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cossa, D., Dang, D. H. & Thomas, B. Mercury mobility in epibenthic waters of a deltaic environment. J. Geophys. Res. Biogeosci. 129, e2023JG007575 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Amos, H. M. et al. Global biogeochemical implications of mercury discharges from rivers and sediment burial. Environ. Sci. Technol. 48, 9514–9522 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ribbe, J. & Holloway, P. E. A model of suspended sediment transport by internal tides. Cont. Shelf Res. 21, 395–422 (2001).

    Article 

    Google Scholar
     

  • Sunderland, E. M. et al. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000. Environ. Sci. Technol. 44, 1698–1704 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Rivers as the largest source of mercury to coastal oceans worldwide. Nat. Geosci. 14, 672–677 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Observation-based mercury export from rivers to coastal oceans in East Asia. Environ. Sci. Technol. 55, 14269–14280 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Aksentov, K. I. et al. Assessment of mercury levels in modern sediments of the East Siberian Sea. Mar. Pollut. Bull. 168, 112426 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liem-Nguyen, V. et al. Spatial patterns and distributional controls of total and methylated mercury off the Lena River in the Laptev Sea sediments. Mar. Chem. 238, 104052 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tesán Onrubia, J. A. et al. Mercury export flux in the Arctic Ocean estimated from 234Th/238U disequilibria. ACS Earth Space Chem. 4, 795–801 (2020).

    Article 

    Google Scholar
     

  • Kohler, S. G. et al. Distribution pattern of mercury in northern Barents Sea and Eurasian Basin surface sediment. Mar. Pollut. Bull. 185, 114272 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bianchi, T. S. et al. Anthropogenic impacts on mud and organic carbon cycling. Nat. Geosci. 17, 287–297 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kocman, D. et al. Toward an assessment of the global inventory of present-day mercury releases to freshwater environments. Int. J. Environ. Res. Public Health 14, 138 (2017).

    Article 

    Google Scholar
     

  • Qiu, X. et al. Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South. Nat. Commun. 16, 1179 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Jaeglé, L., Thompson, L. & Streets, D. G. Six centuries of changing oceanic mercury. Glob. Biogeochem. Cycles 28, 1251–1261 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hayes, C. T. et al. Global ocean sediment composition and burial flux in the deep sea. Glob. Biogeochem. Cycles 35, e2020GB006769 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land–ocean interface. Org. Geochem. 115, 138–155 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sun, X. et al. Mercury burial in modern sedimentary systems of the East China Marginal Seas: the role of coastal oceans in global mercury cycling. Glob. Biogeochem. Cycles 37, e2023GB007760 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Outridge, P., Macdonald, R., Wang, F., Stern, G. & Dastoor, A. A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 5, 89–111 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Dastoor, A. et al. Arctic mercury cycling. Nat. Rev. Earth Environ. 3, 270–286 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rosati, G. et al. Mercury in the Black Sea: new insights from measurements and numerical modeling. Glob. Biogeochem. Cycles 32, 529–550 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Mercury export from mainland China to adjacent seas and its influence on the marine mercury balance. Environ. Sci. Technol. 50, 6224–6232 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hare, A. A. et al. Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. Environ. Sci. Technol. 44, 5805–5811 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Žagar, D. et al. Mercury in the Mediterranean. Part 2: processes and mass balance. Environ. Sci. Pollut. Res. 21, 4081–4094 (2014).

    Article 

    Google Scholar
     

  • Cossa, D. et al. Mediterranean Mercury Assessment 2022: an updated budget, health consequences, and research perspectives. Environ. Sci. Technol. 56, 3840–3862 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Epstein, G., Middelburg, J. J., Hawkins, J. P., Norris, C. R. & Roberts, C. M. The impact of mobile demersal fishing on carbon storage in seabed sediments. Glob. Change Biol. 28, 2875–2894 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Restreppo, G. A., Wood, W. T. & Phrampus, B. J. Oceanic sediment accumulation rates predicted via machine learning algorithm: towards sediment characterization on a global scale. Geo-Mar. Lett. 40, 755–763 (2020).

    Article 

    Google Scholar
     

  • Kim, E.-H., Mason, R. P. & Bergeron, C. M. A modeling study on methylmercury bioaccumulation and its controlling factors. Ecol. Model. 218, 267–289 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ferré, B., De Madron, X. D., Estournel, C., Ulses, C. & Le Corre, G. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: application to the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 28, 2071–2091 (2008).

    Article 

    Google Scholar
     

  • Churchill, J. H. The effect of commercial trawling on sediment resuspension and transport over the Middle Atlantic Bight continental shelf. Cont. Shelf Res. 9, 841–865 (1989).

    Article 

    Google Scholar
     

  • Swift, D. J. in The Geology of Continental Margins (eds Burk, C. A. & Drake, C. L.) 117–135 (Springer, 1974).

  • Collie, J. S., Hall, S. J., Kaiser, M. J. & Poiner, I. R. A quantitative analysis of fishing impacts on shelf‐sea benthos. J. Anim. Ecol. 69, 785–798 (2000).

    Article 

    Google Scholar
     

  • García-Ordiales, E. et al. Mercury and arsenic mobility in resuspended contaminated estuarine sediments (Asturias, Spain): a laboratory-based study. Sci. Total Environ. 744, 140870 (2020).

    Article 

    Google Scholar
     

  • Hiddink, J. G. et al. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl Acad. Sci. USA 114, 8301–8306 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Soerensen, A. L., Schartup, A. T. & Sunderland, E. M. A global model for methylmercury formation and uptake at the base of marine food webs. Glob. Biogeochem. Cycles 34, e2019GB006348 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schartup, A. T. et al. Freshwater discharges drive high levels of methylmercury in Arctic marine biota. Proc. Natl Acad. Sci. USA 112, 11789–11794 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wu, P. et al. Atmospheric monomethylmercury: inferred sources constrained by observations and implications for human exposure. Environ. Int. 193, 109127 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Guo, W. et al. Warming-induced vegetation greening may aggravate soil mercury levels worldwide. Environ. Sci. Technol. 58, 15078–15089 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J., Obrist, D., Dastoor, A., Jiskra, M. & Ryjkov, A. Vegetation uptake of mercury and impacts on global cycling. Nat. Rev. Earth Environ. 2, 269–284 (2021).

    Article 

    Google Scholar
     

  • Liu, M. et al. Substantial accumulation of mercury in the deepest parts of the ocean and implications for the environmental mercury cycle. Proc. Natl Acad. Sci. USA 118, e2102629118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pauly, D. & Zeller, D. (eds) Catch reconstruction: concepts, methods and data sources. SeaAroundUs https://www.seaaroundus.org/catch-reconstruction-and-allocation-methods/ (2015).

  • Pacyna, J. M. et al. Current and future levels of mercury atmospheric pollution on a global scale. Atmos. Chem. Phys. 16, 12495–12511 (2016).

    Article 
    CAS 

    Google Scholar
     

  • De Simone, F. et al. The GOS4M Knowledge Hub: a web-based effectiveness evaluation platform in support of the Minamata Convention on Mercury. Environ. Sci. Policy 124, 235–246 (2021).

    Article 

    Google Scholar
     

  • Bianchi, T. S. et al. What global biogeochemical consequences will marine animal–sediment interactions have during climate change? Elem. Sci. Anthr. 9, 00180 (2021).

    Article 

    Google Scholar
     

  • Jönsson, A., Gustafsson, Ö., Axelman, J. & Sundberg, H. Global accounting of PCBs in the continental shelf sediments. Environ. Sci. Technol. 37, 245–255 (2003).

    Article 

    Google Scholar
     

  • Covelli, S., Faganeli, J., Horvat, M. & Brambati, A. Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic sea). Appl. Geochem. 16, 541–558 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Total mercury and monomethylmercury in water, sediments, and hydrophytes from the rivers, estuary, and bay along the Bohai Sea coast, northeastern China. Appl. Geochem. 24, 1702–1711 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Spada, L., Annicchiarico, C., Cardellicchio, N., Giandomenico, S. & Di Leo, A. Mercury and methylmercury concentrations in Mediterranean seafood and surface sediments, intake evaluation and risk for consumers. Int. J. Hyg. Environ. Health 215, 418–426 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Heimbürger, L.-E. et al. Natural and anthropogenic trace metals in sediments of the Ligurian Sea (northwestern Mediterranean). Chem. Geol. 291, 141–151 (2012).

    Article 

    Google Scholar
     

  • Kim, H. et al. Increase in anthropogenic mercury in marginal sea sediments of the Northwest Pacific Ocean. Sci. Total Environ. 654, 801–810 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Song, S. et al. A global assessment of the mixed layer in coastal sediments and implications for carbon storage. Nat. Commun. 13, 4903 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, C. et al. Warming-induced retreat of West Antarctic glaciers weakened carbon sequestration ability but increased mercury enrichment. Nat. Commun. 16, 1831 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Zaferani, S., Pérez-Rodríguez, M. & Biester, H. Diatom ooze—a large marine mercury sink. Science 361, 797–800 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ryan-Keogh, T. J., Thomalla, S. J., Chang, N. & Moalusi, T. A new global oceanic multi-model net primary productivity data product. Earth Syst. Sci. Data 15, 4829–4848 (2023).

    Article 

    Google Scholar
     

  • Lee, T. R., Wood, W. T. & Phrampus, B. J. A machine learning (kNN) approach to predicting global seafloor total organic carbon. Glob. Biogeochem. Cycles 33, 37–46 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Graw, J., Wood, W. & Phrampus, B. Predicting global marine sediment density using the random forest regressor machine learning algorithm. J. Geophys. Res. -Solid Earth 126, e2020JB020135 (2021).

    Article 

    Google Scholar
     

  • Martin, K. M., Wood, W. T. & Becker, J. J. A global prediction of seafloor sediment porosity using machine learning. Geophys. Res. Lett. 42, 10640–10646 (2015).

    Article 

    Google Scholar
     

  • Dutkiewicz, A., Müller, R. D., O’Callaghan, S. & Jónasson, H. Census of seafloor sediments in the world’s ocean. Geology 43, 795–798 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. Trans-provincial health impacts of atmospheric mercury emissions in China. Nat. Commun. 10, 1484 (2019).

    Article 

    Google Scholar
     

  • Laruelle, G. G. et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029–2051 (2013).

    Article 

    Google Scholar
     

  • Bates, D., Maechler, M., Bolker, B. & Walkeret, S. lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-37 https://doi.org/10.32614/CRAN.package.lme4 (2025).

  • Bartoń, K. MuMIn: Multi-model inference. R package version 1.48.11 https://doi.org/10.32614/CRAN.package.MuMIn (2025).

  • Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. & Jensen, S. P. lmerTest: Tests in linear mixed effects models. R package version 3.1-3 https://doi.org/10.32614/CRAN.package.lmerTest (2020).

  • Servén, D., Brummitt, C. & Abedi, H. dswah/pyGAM: v0.10.1. Zenodo https://doi.org/10.5281/zenodo.1208723 (2025).

  • Médieu, A. et al. Evidence that Pacific tuna mercury levels are driven by marine methylmercury production and anthropogenic inputs. Proc. Natl Acad. Sci. USA 119, e2113032119 (2022).

    Article 

    Google Scholar
     

  • McKinney, W. Data structures for statistical computing in Python. scipy 445, 51–56 (2010).


    Google Scholar
     

  • Zeileis, A. et al. strucchange: testing, monitoring, and dating structural changes. R package version 1.5-4 https://doi.org/10.32614/CRAN.package.strucchange (2024).

  • Pohlert, T. trend: non-parametric trend tests and change-point detection. R package version 1.1.6 https://doi.org/10.32614/CRAN.package.trend (2023).

  • Liu, M. et al. Global riverine land-to-ocean carbon export constrained by observations and multi-model assessment. Nat. Geosci. 17, 896–904 (2024).

    Article 
    CAS 

    Google Scholar
     

  • scikit-learn developers. scikit-learn. Zenodo https://doi.org/10.5281/zenodo.14627164 (2025).

  • Lundberg, S. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Proc. Syst. 30, 4768–4777 (2017).


    Google Scholar
     

  • Sundararajan, M. & Najmi, A. The many Shapley values for model explanation. In International Conference on Machine Learning (eds Daumé, H. & Singh, A.) 9269–9278 (PMLR, 2020).

  • Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Shi, X., Annett, A. L., Jones, R. L., Middag, R. & Mason, R. P. Benthic deposition and burial of total mercury and methylmercury estimated using thorium isotopes in the high-latitude North Atlantic. Geochim. Cosmochim. Acta. 399, 191–204 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Clarke, S. & Elliott, A. Modelling suspended sediment concentrations in the Firth of Forth. Estuar. Coast. Shelf Sci. 47, 235–250 (1998).

    Article 

    Google Scholar
     

  • Kalnejais, L. H., Martin, W. R., Signell, R. P. & Bothner, M. H. Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environ. Sci. Technol. 41, 2282–2288 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ravens, T. M. & Gschwend, P. M. Flume measurements of sediment erodibility in Boston Harbor. J. Hydraul. Eng. 125, 998–1005 (1999).

    Article 

    Google Scholar
     

  • Jing, L. & Ridd, P. V. Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay, Australia. Coast. Eng. 29, 169–186 (1996).

    Article 

    Google Scholar
     

  • Bloesch, J. A review of methods used to measure sediment resuspension. Hydrobiologia 284, 13–18 (1994).

    Article 

    Google Scholar
     

  • Wiberg, P. L., Drake, D. E. & Cacchione, D. A. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions. Cont. Shelf Res. 14, 1191–1219 (1994).

    Article 

    Google Scholar
     

  • Harris, C. K. & Wiberg, P. Across‐shelf sediment transport: interactions between suspended sediment and bed sediment. J. Geophys. Res. Oceans 107, 8-1–8-12 (2002).

    Article 

    Google Scholar
     

  • Dias, J., Gonzalez, R., Garcia, C. & Diaz-del-Rio, V. Sediment distribution patterns on the Galicia-Minho continental shelf. Prog. Oceanogr. 52, 215–231 (2002).

    Article 

    Google Scholar
     

  • Griffin, J. D., Hemer, M. A. & Jones, B. G. Mobility of sediment grain size distributions on a wave dominated continental shelf, southeastern Australia. Mar. Geol. 252, 13–23 (2008).

    Article 

    Google Scholar
     

  • Gill, G. A. et al. Sediment−water fluxes of mercury in Lavaca Bay, Texas. Environ. Sci. Technol. 33, 663–669 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Soerensen, A. L. et al. A mass budget for mercury and methylmercury in the Arctic Ocean. Glob. Biogeochem. Cycles 30, 560–575 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Boudreau, B. P. The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta 60, 3139–3142 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Hollweg, T., Gilmour, C. C. & Mason, R. Mercury and methylmercury cycling in sediments of the mid‐Atlantic continental shelf and slope. Limnol. Oceanogr. 55, 2703–2722 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Eigaard, O. R. et al. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J. Mar. Sci. 73, i27–i43 (2016).

    Article 

    Google Scholar
     

  • De Madron, X. D. et al. Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 25, 2387–2409 (2005).

    Article 

    Google Scholar
     

  • Liu, M. et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure. Nat. Commun. 10, 5164 (2019).

    Article 

    Google Scholar
     

  • Mayorga, E. et al. Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environ. Modell. Softw. 25, 837–853 (2010).

    Article 

    Google Scholar