• Graziosi, S. et al. A vision for sustainable additive manufacturing. Nat. Sustain. 7, 698–705 (2024).

    Article 

    Google Scholar
     

  • Nipu, S. M. A. et al. Advances and perspectives in multi-material additive manufacturing of heterogenous metal-polymer components. npj Adv. Manuf. 2, 31 (2025).

    Article 

    Google Scholar
     

  • Reitz, B. et al. Additive manufacturing under lunar gravity and microgravity. Microgravity Sci. Technol. 33, 25 (2021).

    Article 

    Google Scholar
     

  • Surjadi, J. U. & Portela, C. M. Enabling three-dimensional architected materials across length scales and timescales. Nat. Mater. 24, 493–505 (2025).

    Article 
    CAS 

    Google Scholar
     

  • De Rosa, C., Park, C., Thomas, E. L. & Lotz, B. Microdomain patterns from directional eutectic solidification and epitaxy. Nature 405, 433–437 (2000).

    Article 

    Google Scholar
     

  • Lau, D., Broderick, K., Buehler, M. J. & Büyüköztürk, O. A robust nanoscale experimental quantification of fracture energy in a bilayer material system. Proc. Natl Acad. Sci. USA 111, 11990–11995 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. 3D printing technology in concrete construction. Nat. Rev. Clean Technol. 1, 288–303 (2025).

    Article 

    Google Scholar
     

  • Wu, P., Qian, C. & Okwudire, C. E. Design, modeling and feedforward control of a hybrid extruder for material extrusion additive manufacturing. Addit. Manuf. 92, 104378 (2024).


    Google Scholar
     

  • Tiwari, K. & Kumar, S. Analysis of the factors affecting the dimensional accuracy of 3D printed products. Mater. Today Proc. 5, 18674–18680 (2018).

    Article 

    Google Scholar
     

  • Jin, Z., Zhang, Z., Demir, K. & Gu, G. X. Machine learning for advanced additive manufacturing. Matter 3, 1541–1556 (2020).

    Article 

    Google Scholar
     

  • Gunasegaram, D. R. et al. Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing. Addit. Manuf. 46, 102089 (2021).


    Google Scholar
     

  • Wang, X. Q., Jin, Z., Zheng, B. & Gu, G. X. Transformer-based approach for printing quality recognition in fused filament fabrication. npj Adv. Manuf. 2, 15 (2025).

    Article 

    Google Scholar
     

  • Zhu, Z., Ng, D. W. H., Park, H. S. & McAlpine, M. C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 6, 27–47 (2021).

    Article 

    Google Scholar
     

  • Ren, Z. et al. Machine learning–aided real-time detection of keyhole pore generation in laser powder bed fusion. Science 379, 89–94 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. Q., Jin, Z., Ravichandran, D. & Gu, G. X. Artificial intelligence and multiscale modeling for sustainable biopolymers and bioinspired materials. Adv. Mater. 37, 2416901 (2025).

    Article 
    CAS 

    Google Scholar