• Efstathiou, G., Sutherland, W. J. & Maddox, S. J. The cosmological constant and cold dark matter. Nature 348, 705–707 (1990).

    Article 
    ADS 

    Google Scholar
     

  • White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. The baryon content of galaxy clusters: a challenge to cosmological orthodoxy. Nature 366, 429–433 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Riess, A. G. et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Perlmutter, S. et al. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Spergel, D. N. et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175–194 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Ata, M. et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2. Mon. Not. R. Astron. Soc. 473, 4773–4794 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Peebles, P. J. E. & Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Copeland, E. J., Sami, M. & Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Frieman, J., Turner, M. & Huterer, D. Dark energy and the accelerating Universe. Annu. Rev. Astron. Astrophys. 46, 385–432 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Ratra, B. & Peebles, P. J. E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Caldwell, R. R. A phantom menace? Phys. Lett. B 545, 23–29 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Feng, B., Wang, X.-L. & Zhang, X.-M. Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35–41 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Armendariz-Picon, C., Mukhanov, V. F. & Steinhardt, P. J. A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett. 85, 4438–4441 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Bento, M. C., Bertolami, O. & Sen, A. A. Generalized Chaplygin gas, accelerated expansion and dark energy matter unification. Phys. Rev. D 66, 043507 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Li, M. A model of holographic dark energy. Phys. Lett. B 603, 1–5 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Caldwell, R. R. & Linder, E. V. The limits of quintessence. Phys. Rev. Lett. 95, 141301 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Abbott, T. M. C. et al. The Dark Energy Survey: cosmology results with ~1500 new high-redshift type Ia supernovae using the full 5 yr data set. Astrophys. J. Lett. 973, L14 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Scolnic, D. et al. The Pantheon+ analysis: the full data set and light-curve release. Astrophys. J. 938, 113 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Brout, D. et al. The Pantheon+ analysis: cosmological constraints. Astrophys. J. 938, 110 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Rubin, D. et al. Union through UNITY: cosmology with 2000 SNe using a unified Bayesian framework. Astrophys. J. 986, 231 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • Alam, S. et al. Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D 103, 083533 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Abdul Karim, M. et al. Data Release 1 of the Dark Energy Spectroscopic Instrument. Preprint at https://arxiv.org/abs/2503.14745 (2025).

  • Abdul Karim, M. et al. DESI DR2 results I: baryon acoustic oscillations from the Lyman alpha forest. Preprint at https://arxiv.org/abs/2503.14739 (2025).

  • Abdul Karim, M. et al. DESI DR2 results II: measurements of baryon acoustic oscillations and cosmological constraints. Preprint at https://arxiv.org/abs/2503.14738 (2025).

  • Horndeski, G. W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363–384 (1974).

    Article 
    MathSciNet 

    Google Scholar
     

  • Chevallier, M. & Polarski, D. Accelerating universes with scaling dark matter. Int. J. Mod. Phys. D 10, 213–224 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Linder, E. V. Exploring the expansion history of the Universe. Phys. Rev. Lett. 90, 091301 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Lodha, K. et al. Extended dark energy analysis using DESI DR2 BAO measurements. Preprint at https://arxiv.org/abs/2503.14743 (2025).

  • Sahni, V., Saini, T. D., Starobinsky, A. A. & Alam, U. Statefinder: a new geometrical diagnostic of dark energy. J. Exp. Theor. Phys. 77, 201–206 (2003).

    Article 

    Google Scholar
     

  • Alam, U., Sahni, V., Saini, T. D. & Starobinsky, A. A. Exploring the expanding Universe and dark energy using the Statefinder diagnostic. Mon. Not. R. Astron. Soc. 344, 1057 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Scherrer, R. J. Dark energy models in the w–wa’ plane. Phys. Rev. D 73, 043502 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Crittenden, R. G., Pogosian, L. & Zhao, G.-B. Investigating dark energy experiments with principal components. J. Cosmol. Astropart. Phys. 12, 025 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Crittenden, R. G., Zhao, G.-B., Pogosian, L., Samushia, L. & Zhang, X. Fables of reconstruction: controlling bias in the dark energy equation of state. J. Cosmol. Astropart. Phys. 02, 048 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, G.-B., Crittenden, R. G., Pogosian, L. & Zhang, X. Examining the evidence for dynamical dark energy. Phys. Rev. Lett. 109, 171301 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, G.-B. et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 1, 627–632 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Raveri, M., Bull, P., Silvestri, A. & Pogosian, L. Priors on the effective dark energy equation of state in scalar-tensor theories. Phys. Rev. D 96, 083509 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Frieman, J. A., Hill, C. T., Stebbins, A. & Waga, I. Cosmology with ultralight pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 75, 2077–2080 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Amendola, L. Coupled quintessence. Phys. Rev. D 62, 043511 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Wang, B., Abdalla, E., Atrio-Barandela, F. & Pavon, D. Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures. Rep. Prog. Phys. 79, 096901 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Feng, B., Li, M., Piao, Y.-S. & Zhang, X. Oscillating quintom and the recurrent Universe. Phys. Lett. B 634, 101–105 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Huterer, D. & Starkman, G. Parameterization of dark energy properties: a principal-component approach. Phys. Rev. Lett. 90, 031301 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Raveri, M. et al. Principal reconstructed modes of dark energy and gravity. J. Cosmol. Astropart. Phys. 02, 061 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Jeffreys, H. Theory of Probability 1st edn (Oxford Univ. Press, 1939).

  • Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2014).

  • Gu, G., Wang, X., Mu, X., Yuan, S. & Zhao, G.-B. Dynamical dark energy in light of cosmic distance measurements. I. A demonstration using simulated datasets. Res. Astron. Astrophys. 24, 065001 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wang, X., Gu, G., Mu, X., Yuan, S. & Zhao, G.-B. Dynamical dark energy in light of cosmic distance measurements. II. A study using current observations. Res. Astron. Astrophys. 24, 065002 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Calabrese, E. et al. The Atacama Cosmology Telescope: DR6 constraints on extended cosmological models. Preprint at https://arxiv.org/abs/2503.14454 (2025).

  • Efstathiou, G. Evolving dark energy or supernovae systematics? Mon. Not. R. Astron. Soc. 538, 875–882 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Adame, A. G. et al. DESI 2024 III: baryon acoustic oscillations from galaxies and quasars. J. Cosmol. Astropart. Phys. 04, 012 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Amendola, L. et al. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Relativ. 21, 2 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ellis, R. et al. Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph. Publ. Astron. Soc. Jpn 66, R1 (2014).

    Article 

    Google Scholar
     

  • Aghamousa, A. et al. The DESI experiment part I: science, targeting, and survey design. Preprint at https://arxiv.org/abs/1611.00036 (2016).

  • DESI Collaborationet al. Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument. Astron. J. 164, 207 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Miller, T. N. et al. The optical corrector for the Dark Energy Spectroscopic Instrument. Astron. J. 168, 95 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Poppett, C. et al. Overview of the fiber system for the Dark Energy Spectroscopic Instrument. Astron. J. 168, 245 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Silber, J. H. et al. The robotic multiobject focal plane system of the Dark Energy Spectroscopic Instrument (DESI). Astron. J. 165, 9 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Guy, J. et al. The spectroscopic data processing pipeline for the Dark Energy Spectroscopic Instrument. Astron. J. 165, 144 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Schlafly, E. F. et al. Survey operations for the Dark Energy Spectroscopic Instrument. Astron. J. 166, 259 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hahn, C. et al. The DESI Bright Galaxy Survey: final target selection, design, and validation. Astron. J. 165, 253 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, R. et al. Target selection and validation of DESI luminous red galaxies. Astron. J. 165, 58 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Raichoor, A. et al. Target selection and validation of DESI emission line galaxies. Astron. J. 165, 126 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chaussidon, E. et al. Target selection and validation of DESI quasars. Astrophys. J. 944, 107 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bault, A. et al. Impact of systematic redshift errors on the cross-correlation of the Lyman-α forest with quasars at small scales using DESI early data. J. Cosmol. Astropart. Phys. 01, 130 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Adame, A. G. et al. The early data release of the Dark Energy Spectroscopic Instrument. Astron. J. 168, 58 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Adame, A. G. et al. DESI 2024 IV: baryon acoustic oscillations from the Lyman alpha forest. J. Cosmol. Astropart. Phys. 01, 124 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Adame, A. G. et al. DESI 2024 VI: cosmological constraints from the measurements of baryon acoustic oscillations. J. Cosmol. Astropart. Phys. 02, 021 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Adame, A. G. et al. DESI 2024 VII: cosmological constraints from the full-shape modeling of clustering measurements. J. Cosmol. Astropart. Phys. 07, 028 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Adame, A. G. et al. DESI 2024 V: full-shape galaxy clustering from galaxies and quasars. Preprint at https://arxiv.org/abs/2411.12021 (2024).

  • Elbers, W. et al. Constraints on neutrino physics from DESI DR2 BAO and DR1 full shape. Preprint at https://arxiv.org/abs/2503.14744 (2025).

  • Schöneberg, N. The 2024 BBN baryon abundance update. J. Cosmol. Astropart. Phys. 06, 006 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Rosenberg, E., Gratton, S. & Efstathiou, G. CMB power spectra and cosmological parameters from Planck PR4 with CamSpec. Mon. Not. R. Astron. Soc. 517, 4620–4636 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Seager, S., Sasselov, D. D. & Scott, D. How exactly did the Universe become neutral? Astrophys. J. Suppl. Ser. 128, 407–430 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Lewis, A., Challinor, A. & Lasenby, A. Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 538, 473–476 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, F., Padmanabhan, N. & White, M. Optimal redshift weighting for baryon acoustic oscillations. Mon. Not. R. Astron. Soc. 451, 236–243 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Torrado, J. & Lewis, A. Cobaya: code for Bayesian analysis of hierarchical physical models. J. Cosmol. Astropart. Phys. 2021, 057 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Wang, Y., Pogosian, L., Zhao, G.-B. & Zucca, A. Evolution of dark energy reconstructed from the latest observations. Astrophys. J. Lett. 869, L8 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Handley, W. J., Hobson, M. P. & Lasenby, A. N. PolyChord: nested sampling for cosmology. Mon. Not. R. Astron. Soc. 450, L61–L65 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Handley, W. J., Hobson, M. P. & Lasenby, A. N. PolyChord: nested sampling for cosmology: next-generation nested sampling. Mon. Not. R. Astron. Soc. 453, 4385–4399 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gu, G. et al. Data files and scripts used to produce the figures in ‘Dynamical dark energy in light of the DESI DR2 baryonic acoustic oscillations measurements’. Zenodo https://doi.org/10.5281/zenodo.16881575 (2025).