• Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Y. J. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881–886 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Govinden, V. et al. Spherical ferroelectric solitons. Nat. Mater. 22, 553–561 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tan, C. et al. Engineering polar vortex from topologically trivial domain architecture. Nat. Commun. 12, 4620 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, Z. W. et al. High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci. Adv. 3, e1700919 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, K. et al. Configurable topological textures in strain graded ferroelectric nanoplates. Nat. Commun. 9, 403 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Nanoscale bubble domains and topological transitions in ultrathin ferroelectric films. Adv. Mater. 603, 1702375 (2017).

    Article 

    Google Scholar
     

  • Prokhorenko, S. et al. Motion and teleportation of polar bubbles in low-dimensional ferroelectrics. Nat. Commun. 15, 412 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Deterministic switching of ferroelectric bubble nanodomains. Adv. Funct. Mater. 29, 1808573 (2019).

    Article 

    Google Scholar
     

  • Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bakaul, S. R. et al. Freestanding ferroelectric bubble domains. Adv. Mater. 33, 2105432 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ming, W. et al. Flexoelectric engineering of van der Waals ferroelectric CuInP2S6. Sci. Adv. 8, eabq1232 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lun, Y. et al. Ultralow tip-force driven sizable-area domain manipulation through transverse flexoelectricity. Adv. Mater. 35, 2302320 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X. et al. Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 18, 471–478 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu, D. et al. Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 630, 340–345 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, D. et al. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25–40 (2023).

    Article 

    Google Scholar
     

  • Wang, C. et al. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542–552 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Brehm, J. A. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 19, 43–48 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dawei, Z. et al. Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP2S6. Nano Lett. 21, 995–1002 (2021).

    Article 

    Google Scholar
     

  • Jiang, X. et al. Manipulation of current rectification in van der Waals ferroionic CuInP2S6. Nat. Commun. 13, 574 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhong, Z. et al. Robust threshold-switching behavior assisted by Cu migration in a ferroionic CuInP2S6 heterostructure. ACS Nano 17, 12563–12572 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu, H. et al. Highly tunable lateral homojunction formed in two-dimensional layered CuInP2S6 via in-plane ionic migration. ACS Nano 17, 1239–1246 (2023).

    Article 
    CAS 

    Google Scholar
     

  • You, L. et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qi, Y. et al. Widespread negative longitudinal piezoelectric responses in ferroelectric crystals with layered structures. Phys. Rev. Lett. 126, 217601 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Deng, J. et al. Thickness-dependent in-plane polarization and structural phase transition in van der Waals ferroelectric CuInP2S6. Small 16, 1904529 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ding, B. et al. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 20, 868–873 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Ferroelectric polarization-enhanced performance of flexible CuInP2S6 piezoelectric nanogenerator for biomechanical energy harvesting and voice recognition applications. Adv. Funct. Mater. 33, 2214745 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Olaniyan, I. et al. Switchable topological polar states in epitaxial BaTiO3 nanoislands on silicon. Nat. Commun. 15, 10047 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lukyanchuk, I. et al. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2433 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lukyanchuk, I. et al. Topological foundations of ferroelectricity. Phys. Rep. 1110, 1–56 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Tikhonov, Y. et al. Controllable skyrmion chirality in ferroelectrics. Sci. Rep. 10, 8657 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Govinden, V. et al. Stability of ferroelectric bubble domains. Phys. Rev. Mater. 7, L011401 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Steffes, J. J. et al. Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy. Proc. Natl Acad. Sci. USA 116, 2413–2418 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pereira Gonçalves, M. A. et al. Theoretical guidelines to create and tune electric skyrmion bubbles. Sci. Adv. 5, eaau7023 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, L. et al. Topological defects with distinct dipole configurations in PbTiO3/SrTiO3 multilayer films. Phys. Rev. Lett. 120, 177601 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Mizzi, C. A. et al. Does flexoelectricity drive triboelectricity? Phys. Rev. Lett. 123, 116103 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Park, S. M. et al. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field. Nat. Nanotechnol. 13, 366–370 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin, S. Q. et al. Electron transfer driven by tip-induced flexoelectricity in contact electrification. J. Phys. D: Appl. Phys. 55, 315502 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. X. et al. Strain manipulation of ferroelectric skyrmion bubbles in a freestanding PbTiO3 film: a phase field simulation. Phys. Rev. B 105, 224101 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Junquera, J. et al. Topological phases in polar oxide nanostructures. Rev. Mod. Phys. 95, 025001 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Velický, M. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12, 10463–10472 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kresse, G. et al. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Gonze, X. Adiabatic density-functional perturbation theory. Phys. Rev. A 52, 1096–1114 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 15, 661–667 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. Intrinsic ultrahigh negative Poisson’s ratio in two-dimensional ferroelectric ABP2X6 materials. Acta Phys.-Chim. Sin. 35, 1128–1133 (2019).

    Article 

    Google Scholar
     

  • Liang, C. B. et al. Measurement of the flexoelectric coefficients in van der Waals materials with separation of piezoelectricity. Smart Mater. Struct. 34, 025042 (2025).

    Article 
    CAS 

    Google Scholar