• Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).

    Article 

    Google Scholar
     

  • Tellman, B. et al. Satellite imaging reveals increased proportion of population exposed to floods. Nature 596, 80–86 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kreibich, H. et al. The challenge of unprecedented floods and droughts in risk management. Nature 608, 80–86 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).

    Article 

    Google Scholar
     

  • Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

    Article 

    Google Scholar
     

  • Europe’s floods top 2013 disaster bill according to Munich Re. news.com.au https://www.news.com.au/finance/europes-floods-top-2013-disaster-bill-according-to-munich-re/news-story/e7d8826d655a9a4a465211989750bace (2013).

  • Gaupp, F., Hall, J., Hochrainer-Stigler, S. & Dadson, S. Changing risks of simultaneous global breadbasket failure. Nat. Clim. Change 10, 54–57 (2019).

    Article 

    Google Scholar
     

  • Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2019).

    Article 

    Google Scholar
     

  • Financial Management of Flood Risk (OECD, Publishing, 2016).

  • Zhang, S. et al. Reconciling disagreement on global river flood changes in a warming climate. Nat. Clim. Change 12, 1160–1167 (2022).

    Article 

    Google Scholar
     

  • Boers, N. et al. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature 566, 373–377 (2019).

    Article 

    Google Scholar
     

  • Mondal, S., Mishra, K. A., Leung, R. & Cook, B. Global droughts connected by linkages between drought hubs. Nat. Commun. 14, 144 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Su, Z., Meyerhenke, H. & Kurths, J. The climatic interdependence of extreme-rainfall events around the globe. Chaos 32, 043126 (2022).

    Article 

    Google Scholar
     

  • Ward, P. J. et al. Strong influence of El Nino Southern Oscillation on flood risk around the world. Proc. Natl Acad. Sci. USA 111, 15659–15664 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Steptoe, H., Jones, S. E. O. & Fox, H. Correlations between extreme atmospheric hazards and global teleconnections: implications for multihazard resilience. Rev. Geophys. 56, 50–78 (2018).

    Article 

    Google Scholar
     

  • Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, 568–572 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Blöschl, G. Flood generation: process patterns from the raindrop to the ocean. Hydrol. Earth Syst. Sci. 26, 2469–2480 (2022).

    Article 

    Google Scholar
     

  • Jiang, S., Tarasova, L., Yu, G. & Zscheischler, J. Compounding effects in flood drivers challenge estimates of extreme river floods. Sci. Adv. 10, eadl4005 (2024).

    Article 

    Google Scholar
     

  • Yang, L. et al. Climate more important for Chinese flood changes than reservoirs and land use. Geophys. Res. Lett. 48, e2021GL093061 (2021).

    Article 

    Google Scholar
     

  • Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

    Article 

    Google Scholar
     

  • Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article 

    Google Scholar
     

  • Han, J. et al. Streamflow seasonality in a snow-dwindling world. Nature 629, 1075–1081 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Berghuijs, W. R., Allen, S. T., Harrigan, S. & Kirchner, J. W. Growing spatial scales of synchronous river flooding in Europe. Geophys. Res. Lett. 46, 1423–1428 (2019).

    Article 

    Google Scholar
     

  • Dai, P. & Nie, J. Robust expansion of extreme midlatitude storms under global warming. Geophys. Res. Lett. 49, e2022GL099007 (2022).

    Article 

    Google Scholar
     

  • Yang, Y., Yang, L., Chen, X., Wang, Q. & Tian, F. Climate leads to reversed latitudinal changes in Chinese flood peak timing. Earth’s Future 10, e2022EF002726 (2022).

    Article 

    Google Scholar
     

  • Richard, Y., Pohl, B. & Fauchereau, N. Influence of the Madden–Julian Oscillation on southern African summer rainfall. J. Clim. 20, 4227–4242 (2007).

    Article 

    Google Scholar
     

  • Du, D. et al. Increase in MJO predictability under global warming. Nat. Clim. Change 14, 68–74 (2023).

    Article 

    Google Scholar
     

  • Wang, J., He, J., Liu, X. & Wu, B. Interannual variability of the Meiyu onset over Yangtze-Huaihe River Valley and analyses of its previous strong influence signal. Chin. Sci. Bull. 54, 687–695 (2009).

    Article 

    Google Scholar
     

  • Xu, B. & Li, G. A potential seasonal predictor for summer rainfall over eastern China: Spring Eurasian snowmelt. J. Clim. 37, 1999–2012 (2024).

    Article 

    Google Scholar
     

  • McCabe, G. J. & Dettinger, M. D. Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeorol. 3, 13–25 (2002).

    Article 

    Google Scholar
     

  • Rogers, J. C. & Van Loon, H. The seesaw in winter temperatures between Greenland and northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon. Weather Rev. 107, 509–519 (1979).

    Article 

    Google Scholar
     

  • Beck, H. E. et al. Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrol. Earth Syst. Sci. 21, 2881–2903 (2017).

    Article 

    Google Scholar
     

  • Frasson, R. P. d. M., Schumann, G. J. P., Kettner, A. J., Brakenridge, G. R. & Krajewski, W. F. Will the Surface Water and Ocean Topography (SWOT) satellite mission observe floods? Geophys. Res. Lett. 46, 10435–10445 (2019).

    Article 

    Google Scholar
     

  • Yang, L., Wang, L., Li, X. & Gao, J. On the flood peak distributions over China. Hydrol. Earth Syst. Sci. 23, 5133–5149 (2019).

    Article 

    Google Scholar
     

  • Gudmundsson, L., Do, H. X., Leonard, M. & Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control, time-series indices and homogeneity assessment. Earth Syst. Sci. Data 10, 787–804 (2018).

    Article 

    Google Scholar
     

  • Lehner, B. et al. High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Article 

    Google Scholar
     

  • Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Quian Quiroga, R., Kreuz, T. & Grassberger, P. Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys. Rev. E 66, 041904 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Boyd, M. J. A storage-routing model relating drainage basin hydrology and geomorphology. Water Resour. Res. 14, 921–928 (1978).

    Article 

    Google Scholar
     

  • Villarini, G. On the seasonality of flooding across the continental United States. Adv. Water Res. 87, 80–91 (2016).

    Article 

    Google Scholar
     

  • Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008).

    Article 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Tarasova, L. et al. A process‐based framework to characterize and classify runoff events: The event typology of Germany. Water Resour. Res. 56, e2019WR026951 (2020).

    Article 

    Google Scholar
     

  • Kader, G. D. & Perry, M. Variability for categorical variables. J. Stat. Educ. 15, 2007 (2017).


    Google Scholar
     

  • Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article 

    Google Scholar
     

  • Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).

    Article 

    Google Scholar
     

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Use of the Information-Theoretic Approach 2nd edn (Springer, 2002).

  • Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969).

    Article 

    Google Scholar
     

  • Draper, N. R. & Smith, H. Applied Regression Analysis (Wiley, 1998).

  • Yang, Y. et al. Synchronization of global peak river discharge since the 1980s. Figshare https://doi.org/10.6084/m9.figshare.26139493.v4 (2024).