• Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Mukamel, S. et al. Roadmap on quantum light spectroscopy. J. Phys. B 53, 072002 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kira, M. et al. Quantum spectroscopy with Schrödinger-cat states. Nat. Phys. 7, 799–804 (2011).

    Article 

    Google Scholar
     

  • Chrapkiewicz, R. et al. Hologram of a single photon. Nat. Photonics 10, 576–579 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Adams, B. W. et al. X-ray quantum optics. J. Mod. Opt. 60, 2–21 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Tamasaku, K. et al. Visualizing the local optical response to extreme-ultraviolet radiation with a resolution of λ/380. Nat. Phys. 7, 705–708 (2011).

    Article 

    Google Scholar
     

  • Eisenberger, P. & McCall, S. L. X-ray parametric conversion. Phys. Rev. Lett. 26, 684 (1971).

    Article 
    ADS 

    Google Scholar
     

  • Shwartz, S. et al. X-ray parametric down-conversion in the Langevin regime. Phys. Rev. Lett. 109, 013602 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31 (1988).

    Article 

    Google Scholar
     

  • Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Villeneuve, D. M. Attosecond science. Contemp. Phys. 59, 47–61 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Koll, L.-M. et al. Experimental control of quantum-mechanical entanglement in an attosecond pump–probe experiment. Phys. Rev. Lett. 128, 043201 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shiner, A. D. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nat. Phys. 7, 464–467 (2011).

    Article 

    Google Scholar
     

  • Stammer, P. et al. Quantum electrodynamics of intense laser-matter interactions: a tool for quantum state engineering. PRX Quantum 4, 010201 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gorlach, A. et al. High-harmonic generation driven by quantum light. Nat. Phys. 19, 1689–1696 (2023).

    Article 

    Google Scholar
     

  • Gorlach, A. et al. The quantum-optical nature of high harmonic generation. Nat. Commun. 11, 4598 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Even Tzur, M. et al. Photon-statistics force in ultrafast electron dynamics. Nat. Photonics 17, 501–509 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tsatrafyllis, N. et al. High-order harmonics measured by the photon statistics of the infrared driving-field exiting the atomic medium. Nat. Commun. 8, 15170 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Theidel, D. et al. Evidence of the quantum optical nature of high-harmonic generation. PRX Quantum 5, 040319 (2024).

    Article 

    Google Scholar
     

  • Lewenstein, M. et al. Generation of optical Schrödinger cat states in intense laser–matter interactions. Nat. Phys. 17, 1104–1108 (2021).

    Article 

    Google Scholar
     

  • Tzur, M. E. et al. Generation of squeezed high-order harmonics. Phys. Rev. Res. 6, 033079 (2024).

    Article 

    Google Scholar
     

  • Sloan, J. et al. Entangling extreme ultraviolet photons through strong field pair generation. Preprint at https://arxiv.org/abs/2309.16466 (2023).

  • Gerry, C. C. & Peter L. K. Introductory Quantum Optics (Cambridge Univ. Press, 2023).

  • Slusher, R. E. et al. Pulsed squeezed light. Phys. Rev. Lett. 59, 2566 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Aytür, O. & Kumar, P. Pulsed twin beams of light. Phys. Rev. Lett. 65, 1551 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Pérez, A. M. et al. Bright squeezed-vacuum source with 1.1 spatial mode. Opt. Lett. 39, 2403–2406 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Sh. Iskhakov, T. et al. Superbunched bright squeezed vacuum state. Opt. Lett. 37, 1919–1921 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Cutipa, P. & Chekhova, M. V. Bright squeezed vacuum for two-photon spectroscopy: simultaneously high resolution in time and frequency, space and wavevector. Opt. Lett. 47, 465–468 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nat. Phys. 2, 781–786 (2006).

    Article 

    Google Scholar
     

  • Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article 

    Google Scholar
     

  • Orenstein, G. et al. Shaping electron-hole trajectories for solid-state high harmonic generation control. Opt. Express 27, 37835–37845 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rasputnyi, A. et al. High-harmonic generation by a bright squeezed vacuum. Nat. Phys. 20, 1960–1965 (2024).

    Article 

    Google Scholar
     

  • Bertrand, J. B. et al. Ultrahigh-order wave mixing in noncollinear high harmonic generation. Phys. Rev. Lett. 106, 023001 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Purschke, D. N. et al. Microscopic mechanisms of high-order wave mixing in solids. Phys. Rev. A 108, L051103 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Manceau, M. et al. Indefinite-mean Pareto photon distribution from amplified quantum noise. Phys. Rev. Lett. 123, 123606 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lettau, T. et al. Superthermal photon bunching in terms of simple probability distributions. Phys. Rev. A 97, 053835 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jahangiri, S. et al. Point processes with Gaussian boson sampling. Phys. Rev. E 101, 022134 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Allevi, A., Cassina, S. & Bondani, M. Super-thermal light for imaging applications. Quantum Meas. Quantum Metrol. 4, 26–34 (2017).


    Google Scholar
     

  • Vollmer, C. E. et al. Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. Phys. Rev. Lett. 112, 073602 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kizmann, M. et al. Subcycle squeezing of light from a time flow perspective. Nat. Phys. 15, 960–966 (2019).

    Article 

    Google Scholar
     

  • Riek, C. et al. Subcycle quantum electrodynamics. Nature 541, 376–379 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dupont, E. et al. Phase-controlled currents in semiconductors. Phys. Rev. Lett. 74, 3596 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Sederberg, S. et al. Vectorized optoelectronic control and metrology in a semiconductor. Nat. Photonics 14, 680–685 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Jana, K. et al. Quantum control of flying doughnut terahertz pulses. Sci. Adv. 10, eadl1803 (2024).

    Article 

    Google Scholar
     

  • Christ, A. et al. Probing multimode squeezing with correlation functions. New J. Phys. 13, 033027 (2011).

    Article 
    ADS 

    Google Scholar