Blume-Kohout, R., Caves, C. M. & Deutsch, I. H. Climbing mount scalable: physical resource requirements for a scalable quantum computer. Found. Phys. 32, 1641–1670 (2002).
Greentree, A. D. et al. Maximizing the Hilbert space for a finite number of distinguishable quantum states. Phys. Rev. Lett. 92, 097901 (2004).
Ralph, T. C., Resch, K. J. & Gilchrist, A. Efficient Toffoli gates using qudits. Phys. Rev. A 75, 022313 (2007).
Fedorov, A., Steffen, L., Baur, M., Da Silva, M. P. & Wallraff, A. Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2012).
Bocharov, A., Roetteler, M. & Svore, K. M. Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A 96, 012306 (2017).
Gokhale, P. et al. Asymptotic improvements to quantum circuits via qutrits. In Proc. 46th International Symposium on Computer Architecture https://doi.org/10.1145/3307650.3322253 (ACM, 2019).
Chu, J. et al. Scalable algorithm simplification using quantum AND logic. Nat. Phys. 19, 126–131 (2023).
Fernández De Fuentes, I. et al. Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields. Nat. Commun. 15, 1380 (2024).
Vilas, N. B. et al. An optical tweezer array of ultracold polyatomic molecules. Nature 628, 282–286 (2024).
Chaudhury, S. et al. Quantum control of the hyperfine spin of a Cs atom ensemble. Phys. Rev. Lett. 99, 163002 (2007).
Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).
Chi, Y. et al. A programmable qudit-based quantum processor. Nat. Commun. 13, 1166 (2022).
Nguyen, L. B. et al. Empowering a qudit-based quantum processor by traversing the dual bosonic ladder. Nat. Commun. 15, 7117 (2024).
Roy, S. et al. Synthetic high angular momentum spin dynamics in a microwave oscillator. Phys. Rev. X 15, 021009 (2025).
Wang, Z., Parker, R. W., Champion, E. & Blok, M. S. High-EJ/EC transmon qudits with up to 12 levels. Phys. Rev. Appl. 23, 034046 (2025).
Leupold, F. M. et al. Sustained state-independent quantum contextual correlations from a single ion. Phys. Rev. Lett. 120, 180401 (2018).
Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 1053–1057 (2022).
Adambukulam, C., Johnson, B., Morello, A. & Laucht, A. Hyperfine spectroscopy and fast, all-optical arbitrary state initialization and readout of a single, ten-level 73Ge vacancy nuclear spin qudit in diamond. Phys. Rev. Lett. 132, 060603 (2024).
Soltamov, V. A. et al. Excitation and coherent control of spin qudit modes in silicon carbide at room temperature. Nat. Commun. 10, 1678 (2019).
Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).
Sivak, V. et al. Model-free quantum control with reinforcement learning. Phys. Rev. X 12, 011059 (2022).
Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023).
Wang, Y., Hu, Z., Sanders, B. C. & Kais, S. Qudits and high-dimensional quantum computing. Front. Phys. 8, 589504 (2020).
Campbell, E. T., Anwar, H. & Browne, D. E. Magic-state distillation in all prime dimensions using quantum Reed-Muller codes. Phys. Rev. X 2, 041021 (2012).
Campbell, E. T. Enhanced fault-tolerant quantum computing in d-level systems. Phys. Rev. Lett. 113, 230501 (2014).
Meth, M. et al. Simulating two-dimensional lattice gauge theories on a qudit quantum computer. Nat. Phys. 21, 570–576 (2025).
Sawaya, N. P. D. et al. Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians. npj Quantum Inf. 6, 49 (2020).
Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).
Ni, Z. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature 616, 56–60 (2023).
Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).
Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).
De Neeve, B., Nguyen, T.-L., Behrle, T. & Home, J. P. Error correction of a logical grid state qubit by dissipative pumping. Nat. Phys. 18, 296–300 (2022).
Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).
Lachance-Quirion, D. et al. Autonomous quantum error correction of Gottesman–Kitaev–Preskill states. Phys. Rev. Lett. 132, 150607 (2024).
Konno, S. et al. Logical states for fault-tolerant quantum computation with propagating light. Science 383, 289–293 (2024).
Matsos, V. G. et al. Universal quantum gate set for Gottesman–Kitaev–Preskill logical qubits. Preprint at https://arxiv.org/abs/2409.05455 (2024).
Gertler, J. M. et al. Protecting a bosonic qubit with autonomous quantum error correction. Nature 590, 243–248 (2021).
Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021).
Ganjam, S. et al. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat. Commun. 15, 3687 (2024).
Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).
Weyl, H. The Theory of Groups and Quantum Mechanics (Dover Publications, 1950).
Schwinger, J. Unitary operator bases. Proc. Natl Acad. Sci. USA 46, 570 (1960).
Royer, B., Singh, S. & Girvin, S. Stabilization of finite-energy Gottesman-Kitaev-Preskill states. Phys. Rev. Lett. 125, 260509 (2020).
Grimsmo, A. L. & Puri, S. Quantum error correction with the Gottesman-Kitaev-Preskill code. PRX Quantum 2, 020101 (2021).
Flühmann, C. & Home, J. Direct characteristic-function tomography of quantum states of the trapped-ion motional oscillator. Phys. Rev. Lett. 125, 043602 (2020).
Kenfack, A. & Życzkowski, K. Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B 6, 396 (2004).
Nielsen, M. A. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 303, 249–252 (2002).
Eickbusch, A. et al. Fast universal control of an oscillator with weak dispersive coupling to a qubit. Nat. Phys. 18, 1464–1469 (2022).
Rosenblum, S. et al. Fault-tolerant detection of a quantum error. Science 361, 266–270 (2018).
Ding, A. Z. et al. Quantum control of an oscillator with a Kerr-cat qubit. Preprint at https://arxiv.org/abs/2407.10940 (2024).
Schmidt, F., Miller, D. & Van Loock, P. Error-corrected quantum repeaters with Gottesman–Kitaev–Preskill qudits. Phys. Rev. A 109, 042427 (2024).
Wang, Z. & Jiang, L. Passive environment-assisted quantum communication with GKP states. Phys. Rev. X 15, 021003 (2025).
Terhal, B. M., Conrad, J. & Vuillot, C. Towards scalable bosonic quantum error correction. Quantum Sci. Technol. 5, 043001 (2020).
Schmidt, F. & van Loock, P. Quantum error correction with higher Gottesman–Kitaev–Preskill codes: minimal measurements and linear optics. Phys. Rev. A 105, 042427 (2022).
Rojkov, I. et al. Two-qubit operations for finite-energy Gottesman–Kitaev–Preskill encodings. Phys. Rev. Lett. 133, 100601 (2024).
Cafaro, C., Maiolini, F. & Mancini, S. Quantum stabilizer codes embedding qubits into qudits. Phys. Rev. A 86, 022308 (2012).
Gross, J. A. Designing codes around interactions: the case of a spin. Phys. Rev. Lett. 127, 010504 (2021).
Gross, J. A., Godfrin, C., Blais, A. & Dupont-Ferrier, E. Hardware-efficient error-correcting codes for large nuclear spins. Phys. Rev. Appl. 22, 014006 (2024).
Brock, B. et al. Data for ‘Quantum error correction of qudits beyond break-even’. Zenodo https://doi.org/10.5281/zenodo.15009817 (2025).