• Blume-Kohout, R., Caves, C. M. & Deutsch, I. H. Climbing mount scalable: physical resource requirements for a scalable quantum computer. Found. Phys. 32, 1641–1670 (2002).

    Article 
    MathSciNet 

    Google Scholar
     

  • Greentree, A. D. et al. Maximizing the Hilbert space for a finite number of distinguishable quantum states. Phys. Rev. Lett. 92, 097901 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ralph, T. C., Resch, K. J. & Gilchrist, A. Efficient Toffoli gates using qudits. Phys. Rev. A 75, 022313 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fedorov, A., Steffen, L., Baur, M., Da Silva, M. P. & Wallraff, A. Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bocharov, A., Roetteler, M. & Svore, K. M. Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A 96, 012306 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Gokhale, P. et al. Asymptotic improvements to quantum circuits via qutrits. In Proc. 46th International Symposium on Computer Architecture https://doi.org/10.1145/3307650.3322253 (ACM, 2019).

  • Chu, J. et al. Scalable algorithm simplification using quantum AND logic. Nat. Phys. 19, 126–131 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fernández De Fuentes, I. et al. Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields. Nat. Commun. 15, 1380 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilas, N. B. et al. An optical tweezer array of ultracold polyatomic molecules. Nature 628, 282–286 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhury, S. et al. Quantum control of the hyperfine spin of a Cs atom ensemble. Phys. Rev. Lett. 99, 163002 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chi, Y. et al. A programmable qudit-based quantum processor. Nat. Commun. 13, 1166 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. B. et al. Empowering a qudit-based quantum processor by traversing the dual bosonic ladder. Nat. Commun. 15, 7117 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, S. et al. Synthetic high angular momentum spin dynamics in a microwave oscillator. Phys. Rev. X 15, 021009 (2025).

  • Wang, Z., Parker, R. W., Champion, E. & Blok, M. S. High-EJ/EC transmon qudits with up to 12 levels. Phys. Rev. Appl. 23, 034046 (2025).

  • Leupold, F. M. et al. Sustained state-independent quantum contextual correlations from a single ion. Phys. Rev. Lett. 120, 180401 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 1053–1057 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Adambukulam, C., Johnson, B., Morello, A. & Laucht, A. Hyperfine spectroscopy and fast, all-optical arbitrary state initialization and readout of a single, ten-level 73Ge vacancy nuclear spin qudit in diamond. Phys. Rev. Lett. 132, 060603 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Soltamov, V. A. et al. Excitation and coherent control of spin qudit modes in silicon carbide at room temperature. Nat. Commun. 10, 1678 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Sivak, V. et al. Model-free quantum control with reinforcement learning. Phys. Rev. X 12, 011059 (2022).

    CAS 

    Google Scholar
     

  • Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Hu, Z., Sanders, B. C. & Kais, S. Qudits and high-dimensional quantum computing. Front. Phys. 8, 589504 (2020).

    Article 

    Google Scholar
     

  • Campbell, E. T., Anwar, H. & Browne, D. E. Magic-state distillation in all prime dimensions using quantum Reed-Muller codes. Phys. Rev. X 2, 041021 (2012).

    CAS 

    Google Scholar
     

  • Campbell, E. T. Enhanced fault-tolerant quantum computing in d-level systems. Phys. Rev. Lett. 113, 230501 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meth, M. et al. Simulating two-dimensional lattice gauge theories on a qudit quantum computer. Nat. Phys. 21, 570–576 (2025).

  • Sawaya, N. P. D. et al. Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians. npj Quantum Inf. 6, 49 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, Z. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature 616, 56–60 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).

  • Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • De Neeve, B., Nguyen, T.-L., Behrle, T. & Home, J. P. Error correction of a logical grid state qubit by dissipative pumping. Nat. Phys. 18, 296–300 (2022).

    Article 

    Google Scholar
     

  • Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lachance-Quirion, D. et al. Autonomous quantum error correction of Gottesman–Kitaev–Preskill states. Phys. Rev. Lett. 132, 150607 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Konno, S. et al. Logical states for fault-tolerant quantum computation with propagating light. Science 383, 289–293 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsos, V. G. et al. Universal quantum gate set for Gottesman–Kitaev–Preskill logical qubits. Preprint at https://arxiv.org/abs/2409.05455 (2024).

  • Gertler, J. M. et al. Protecting a bosonic qubit with autonomous quantum error correction. Nature 590, 243–248 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganjam, S. et al. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat. Commun. 15, 3687 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Weyl, H. The Theory of Groups and Quantum Mechanics (Dover Publications, 1950).

  • Schwinger, J. Unitary operator bases. Proc. Natl Acad. Sci. USA 46, 570 (1960).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Royer, B., Singh, S. & Girvin, S. Stabilization of finite-energy Gottesman-Kitaev-Preskill states. Phys. Rev. Lett. 125, 260509 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimsmo, A. L. & Puri, S. Quantum error correction with the Gottesman-Kitaev-Preskill code. PRX Quantum 2, 020101 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Flühmann, C. & Home, J. Direct characteristic-function tomography of quantum states of the trapped-ion motional oscillator. Phys. Rev. Lett. 125, 043602 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kenfack, A. & Życzkowski, K. Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B 6, 396 (2004).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Nielsen, M. A. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 303, 249–252 (2002).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Eickbusch, A. et al. Fast universal control of an oscillator with weak dispersive coupling to a qubit. Nat. Phys. 18, 1464–1469 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rosenblum, S. et al. Fault-tolerant detection of a quantum error. Science 361, 266–270 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, A. Z. et al. Quantum control of an oscillator with a Kerr-cat qubit. Preprint at https://arxiv.org/abs/2407.10940 (2024).

  • Schmidt, F., Miller, D. & Van Loock, P. Error-corrected quantum repeaters with Gottesman–Kitaev–Preskill qudits. Phys. Rev. A 109, 042427 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wang, Z. & Jiang, L. Passive environment-assisted quantum communication with GKP states. Phys. Rev. X 15, 021003 (2025).

  • Terhal, B. M., Conrad, J. & Vuillot, C. Towards scalable bosonic quantum error correction. Quantum Sci. Technol. 5, 043001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, F. & van Loock, P. Quantum error correction with higher Gottesman–Kitaev–Preskill codes: minimal measurements and linear optics. Phys. Rev. A 105, 042427 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Rojkov, I. et al. Two-qubit operations for finite-energy Gottesman–Kitaev–Preskill encodings. Phys. Rev. Lett. 133, 100601 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Cafaro, C., Maiolini, F. & Mancini, S. Quantum stabilizer codes embedding qubits into qudits. Phys. Rev. A 86, 022308 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gross, J. A. Designing codes around interactions: the case of a spin. Phys. Rev. Lett. 127, 010504 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Gross, J. A., Godfrin, C., Blais, A. & Dupont-Ferrier, E. Hardware-efficient error-correcting codes for large nuclear spins. Phys. Rev. Appl. 22, 014006 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Brock, B. et al. Data for ‘Quantum error correction of qudits beyond break-even’. Zenodo https://doi.org/10.5281/zenodo.15009817 (2025).