1. EXECUTIVE SUMMARY 1.1. Introduction to gas separation membranes for decarbonization 1.2. Gas separation membrane markets: Maturities and opportunities 1.3. Leading polymer materials for gas separation membranes 1.4. Material developments for gas separation membranes 1.5. Commercial maturity of materials for gas separation membranes applications in this report 1.6. Key players in gas separation membranes by material 1.7. Developing new membrane materials: Key trends 1.8. Overview of gas separation membranes for decarbonization applications 1.9. Gas separation membranes for biogas upgrading 1.10. Gas separation membranes for natural gas processing 1.11. Gas separation membranes for post-combustion carbon capture 1.12. Gas separation membranes for hydrogen 1.13. Gas separation membranes for helium 1.14. Overview of gas separation membranes in decarbonization 1.15. Main gas separation polymer membrane manufacturers 1.16. Recent industry progress in gas separation membranes for decarbonization 1.17. IDTechEx forecast: Revenue from gas separation membranes 1.18. Access More With an IDTechEx Subscription 2. INTRODUCTION 2.1. Introduction to gas separation membranes for decarbonization 2.2. Gas separation membrane markets: Maturities and opportunities 2.3. Why use membranes for gas separation? 2.4. Membranes: Operating principles 2.5. Leading polymer materials for gas separation membranes 2.6. Polymeric membrane module design: Hollow fibre vs spiral wound 2.7. Material developments for gas separation membranes 2.8. Comparing gas separation membrane materials 2.9. Polymeric-based membranes for gas separation: Overview 2.10. Ceramic-based membranes for gas separation: Overview 2.11. Metallic-based membranes for gas separation: Overview 2.12. Composite membranes for gas separation: Overview 2.13. Asymmetric membranes vs TFC membranes 2.14. Overcoming the Robeson limit: Achieving maximum selectivity and permeability 2.15. Developing new membrane materials: Key trends 2.16. Polymer membranes usually require multi-stage processes 2.17. Overview of gas separation membranes in decarbonization 3. GAS SEPARATION MEMBRANE MANUFACTURING 3.1. Leading gas separation membrane manufacturers 3.1.1. History of gas separation membranes 3.1.2. Air Liquide 3.1.3. Air Products 3.1.4. Honeywell UOP 3.1.5. UBE 3.1.6. Evonik 3.1.7. SLB 3.1.8. MTR (Membrane Technology and Research) 3.1.9. Airrane 3.1.10. Main gas separation polymer membrane manufacturers 3.1.11. 2024/2025 Industry News: Gas Separation Membranes 3.2. Membrane fabrication techniques 3.2.1. Conventional membrane manufacturing: Phase inversion 3.2.2. Single asymmetric membrane vs dual layer membrane 3.2.3. Hybrid NIPS and TIPS gas separation membrane fabrication 3.2.4. Manufacturing thin film composites 3.2.5. Manufacturing organic hybrid membranes: SK Innovation 3.2.6. Manufacturing carbon membranes: Toray 4. BIOGAS UPGRADING 4.1. Introduction to biogas upgrading 4.2. Biomethane markets (renewable natural gas markets) 4.3. Barrier: Biomethane production more expensive than natural gas 4.4. Biomethane/RNG market commentary 4.5. Membranes have become the favoured technology for biogas upgrading 4.6. Main players in biogas upgrading gas separation membranes 4.7. Market share of biogas upgrading membranes 4.8. Biomethane: Main plant players 4.9. Desirable properties for biogas upgrading membranes 4.10. Evonik: 3-stage membrane process for biogas upgrading 4.11. Additional stages in membrane biogas upgrading 4.12. Hybrid process: Membranes and cryogenic for upgrading landfill gas 4.13. Emerging materials for biogas upgrading membranes 4.14. Alternatives to membranes: Developments in biogas upgrading technologies 5. CCUS 5.1. Introduction 5.1.1. What is Carbon Capture, Utilization and Storage (CCUS)? 5.1.2. Why CCUS and why now? 5.1.3. The CCUS value chain 5.1.4. Main CO2 capture systems 5.1.5. Development of the CCUS business model 5.1.6. CCUS business model: full value chain 5.1.7. CCUS business model: Networks and hub model 5.1.8. CCUS business model: Partial-chain 5.1.9. Main CO2 capture technologies 5.1.10. Comparison of CO2 capture technologies 5.1.11. Amine solvents dominate carbon capture but there are opportunities for membranes 5.1.12. No single carbon capture technology will be the best across all applications 5.1.13. Carbon capture technology providers for existing large-scale projects 5.1.14. Technology readiness levels of carbon capture technologies 5.2. Gas separation membranes for natural gas sweetening 5.2.1. Introduction to natural gas processing with carbon capture 5.2.2. Development of membranes for natural gas processing 5.2.3. Market share of natural gas separation membranes 5.2.4. Gas separation membranes for natural gas sweetening 5.2.5. Natural gas processing: spiral wound and hollow fiber membranes 5.2.6. H2S considerations in CH4/CO2 separation for natural gas sweetening 5.2.7. Overview of largest natural gas processing CCUS projects 5.2.8. Fluoropolymer gas separation membranes for natural gas processing 5.3. Gas separation membranes for post-combustion carbon capture 5.3.1. Post-combustion CO₂ capture 5.3.2. Membranes for post-combustion CO2 capture 5.3.3. When should alternatives to solvent-based carbon capture be used? 5.3.4. Overcoming the Robeson limit for post-combustion carbon capture 5.3.5. Leading players in membrane-based post-combustion capture 5.3.6. Polymer membranes for post-combustion carbon capture: PEG membranes 5.3.7. Economics of polymer membranes for post-combustion capture 5.3.8. Increasing CO2 recovery rates for polymer membranes: MTR example 5.3.9. Polymer membranes for post-combustion carbon capture: emerging materials 5.3.10. Facilitated transport membranes (FTM) for post-combustion carbon capture 5.3.11. Energy demand of post-combustion carbon capture technologies 5.3.12. Economics of FTMs for post-combustion carbon capture 5.3.13. Facilitated transport membrane materials for post-combustion carbon capture 5.3.14. Challenges and innovations for membranes in post-combustion capture 5.3.15. 2024/2025 Industry News: Membranes for post-combustion capture 5.3.16. Benchmarking membranes for post-combustion capture 5.3.17. Graphene membranes for post-combustion carbon capture: Emerging material 5.3.18. MOF membranes for post-combustion carbon capture: Emerging material 5.4. Gas separation membranes for other CCUS applications (oxyfuel, EOR, DAC) 5.4.1. Oxy-fuel combustion CO₂ capture 5.4.2. Oxygen separation technologies for oxy-fuel combustion 5.4.3. What is CO2-EOR? 5.4.4. What happens to the injected CO2? 5.4.5. Membrane technology for EOR 5.4.6. CO2 capture/separation mechanisms in DAC 5.4.7. Membranes for direct air capture 5.4.8. IDTechEx CCUS Portfolio 6. HYDROGEN 6.1. Overview of the hydrogen value chain 6.1.1. State of the hydrogen market today 6.1.2. Major drivers for low-carbon hydrogen production & adoption 6.1.3. Key legislation & funding mechanisms driving hydrogen development 6.1.4. The colors of hydrogen 6.1.5. Hydrogen value chain overview 6.1.6. Blue hydrogen: Main syngas production technologies 6.1.7. Blue hydrogen production – SMR with CCUS example 6.1.8. Cost comparison of different types of hydrogen 6.1.9. Overview of hydrogen storage 6.1.10. Overview of hydrogen distribution 6.1.11. Hydrogen carriers – overview 6.1.12. Hydrogen carriers – liquid hydrogen (LH2) vs ammonia & LOHCs 6.1.13. Overview of hydrogen applications 6.1.14. Hydrogen purity requirements 6.2. Gas separation membranes for established hydrogen applications 6.2.1. Gas separation membranes used for hydrogen separation – overview 6.2.2. Common gas separations where hydrogen is used & competing technologies 6.2.3. Example application – hydrogen recovery from ammonia reactor purge gas 6.2.4. Example application – hydrogen recovery in refinery applications 6.2.5. Key gas separation membrane players in established hydrogen separations 6.2.6. Market share of hydrogen separation membranes in mature applications 6.3. Gas separation membranes in emerging hydrogen applications (blue hydrogen/pre-combustion carbon capture, hydrogen deblending, ammonia cracking) 6.3.1. Emerging opportunities for gas separation membranes in hydrogen 6.3.2. Key membrane players targeting emerging hydrogen applications 6.3.3. Gas separation membranes in blue hydrogen production (pre-combustion capture) 6.3.4. Honeywell UOP – membranes in CO2 fractionation for blue hydrogen 6.3.5. Air Liquide hybrid technology for CCUS: Blue hydrogen 6.3.6. Hydrogen blending & deblending with natural gas 6.3.7. Hydrogen deblending – applicability of membrane separations 6.3.8. Hydrogen deblending – Linde & Evonik system case study (1) 6.3.9. Hydrogen deblending – Linde & Evonik system case study (2) 6.3.10. Hydrogen deblending – National Gas case study (UK) 6.3.11. Electrochemical hydrogen separation – competitor to gas separation membranes 6.3.12. Electrochemical hydrogen separation – key players 6.3.13. Membranes in ammonia cracking 6.4. Innovations in polymer membrane materials for hydrogen separation 6.4.1. Key R&D areas for gas separation membranes 6.4.2. Polymer membrane developments for hydrogen separation – DiviGas 6.4.3. Polymer membrane developments for hydrogen separation – DiviGas 6.4.4. Polymer membrane developments for hydrogen separation – Membravo 6.4.5. Other commercial developments for polymer membranes in hydrogen separation 6.4.6. Polymers of intrinsic microporosity for hydrogen separation – Osmoses 6.4.7. Key academic research areas for H2 separation – mixed matrix membranes 6.4.8. Case study – novel mixed matrix membrane (MMM) for hydrogen 6.4.9. Key academic research areas for H2 separation – carbon molecular sieves 6.4.10. Case study – novel hybrid boronitride-CMS membrane for hydrogen 6.5. Metallic membranes for hydrogen purification in ammonia cracking & other applications 6.5.1. Metallic membranes for hydrogen purification – overview 6.5.2. Metallic membranes for hydrogen purification – materials 6.5.3. Key application markets for metallic membranes 6.5.4. Key metallic membrane players – Hydrogen Mem-Tech (1) 6.5.5. Key metallic membrane players – Hydrogen Mem-Tech (2) 6.5.6. Key metallic membrane players – H2SITE (1) 6.5.7. Key metallic membrane players – H2SITE (2) 6.5.8. Key metallic membrane players – H2SITE (3) 6.5.9. Other players developing metallic composite membrane systems 6.5.10. Other players developing metallic composite membrane systems 6.5.11. Other players developing metallic composite membrane systems 6.5.12. Other players developing metallic composite membrane systems 6.5.13. IDTechEx Hydrogen & Fuel Cell Research Portfolio 7. HELIUM 7.1. Helium markets 7.2. Typical helium supply chain and separation processes 7.3. Three industrial helium separation technologies: Cryogenic, PSA and membranes 7.4. Hollow fiber membranes are a popular choice for helium separation 7.5. Different types of hollow fiber membranes are available for helium separation 7.6. Generon’s membranes + PSA technology can recover helium to >99.5% purity 7.7. Grasys develops and provides membrane technology for helium separation 7.8. Air Liquide’s advanced separation technology uses membranes and PSA 7.9. Linde offers cryogenic, membrane, and PSA-based separation technologies 7.10. UGS offers fully skidded membrane-based helium separation systems 7.11. Membrane and PSA methods are more economical than cryogenic separation 7.12. Helium Market 2025-2035: Applications, Alternatives, and Reclamation 8. MARKET FORECASTS 8.1. Gas separation membrane market forecasts 8.1.1. Scope for IDTechEx gas separation membrane forecasts 8.1.2. Revenue from gas separation membranes: 2026-2036 (million US$) 8.1.3. Area of membrane material: 2026-2036 (million m2) 8.1.4. Gas separation membrane market forecasts discussion 8.2. Biomethane market forecasts 8.2.1. Global biomethane production forecast segmented by region: 2013-2036 (billion cubic meters) 8.2.2. Global biomethane production forecast discussion 8.2.3. % of biogas upgrading plants using membrane separation technologies: 2013-2036 8.2.4. Membrane biogas upgrading forecast: 2025-2036 (billion cubic meters of biomethane produced) 8.3. Natural gas market forecasts 8.3.1. Global natural gas production forecast: 1990-2036 (billion cubic meters) 8.3.2. % of natural gas processing plants using membrane separation technologies: 2000-2036 8.3.3. Membrane natural gas processing forecast: 2025-2036 (billion cubic meters of natural gas) 8.4. Membranes for post-combustion carbon capture market forecasts 8.4.1. Membrane post-combustion capture forecast: 2025-2036 (million tonnes per annum of CO2 captured) 8.4.2. Membrane post-combustion capture forecast discussion 8.5. Membranes for hydrogen production market forecasts (ammonia production, refining & petrochemical, methanol production, and blue hydrogen production) 8.5.1. Membrane hydrogen production forecast: 2024-2036 (million tonnes per annum of H2) 8.5.2. Membrane hydrogen production forecast discussion 9. COMPANY PROFILES 9.1. Links to company profiles on the IDTechEx portal