• Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tsui, Y.-C. et al. Direct observation of a magnetic-field-induced Wigner crystal. Nature 628, 287–292 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Craig, I. M. et al. Local atomic stacking and symmetry in twisted graphene trilayers. Nat. Mater. 23, 323–330 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Devakul, T. et al. Magic-angle helical trilayer graphene. Sci. Adv. 9, eadi6063 (2023).

    Article 

    Google Scholar
     

  • Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).

    Article 

    Google Scholar
     

  • Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, E. et al. Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nat. Commun. 12, 5601 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Tuning commensurability in twisted van der Waals bilayers. Nature 625, 494–499 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Koren, E. et al. Coherent commensurate electronic states at the interface between misoriented graphene layers. Nat. Nanotechnol. 11, 752–757 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Transport between twisted graphene layers. Phys. Rev. B 81, 245412 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, X. et al. Unveiling atomic-scale moiré features and atomic reconstructions in high-angle commensurately twisted transition metal dichalcogenide homobilayers. Nano Lett. 21, 3262–3270 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nguyen, K. X. et al. Achieving sub-0.5-angstrom–resolution ptychography in an uncorrected electron microscope. Science 383, 865–870 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Y. et al. Pair density wave state in a monolayer high-Tc iron-based superconductor. Nature 618, 934–939 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Z. et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nat. Commun. 11, 2994 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Sung, S. H. et al. Torsional periodic lattice distortions and diffraction of twisted 2D materials. Nat. Commun. 13, 7826 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kim, J. et al. Anomalous optical excitations from arrays of whirlpooled lattice distortions in moiré superlattices. Nat. Mater. 21, 890–895 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Chen, P. et al. Tunable moiré superlattice of artificially twisted monolayers. Adv. Mater. 31, 1901077 (2019).

    Article 

    Google Scholar
     

  • Zhang, C. et al. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe2. Nano Lett. 15, 6494–6500 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Galperin, M., Ratner, M. A. & Nitzan, A. Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. J. Chem. Phys. 121, 11965–11979 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Klein, J., Léger, A., Belin, M., Défourneau, D. & Sangster, M. J. L. Inelastic-electron-tunneling spectroscopy of metal-insulator-metal junctions. Phys. Rev. B 7, 2336–2348 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Morales-Durán, N., Wei, N., Shi, J. & MacDonald, A. H. Magic angles and fractional Chern insulators in twisted homobilayer transition metal dichalcogenides. Phys. Rev. Lett. 132, 096602 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Gao, Q., Dong, J., Ledwith, P., Parker, D. & Khalaf, E. Untwisting moiré physics: almost ideal bands and fractional Chern insulators in periodically strained monolayer graphene. Phys. Rev. Lett. 131, 096401 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article 

    Google Scholar
     

  • Yankowitz, M., McKenzie, D. & LeRoy, B. J. Local spectroscopic characterization of spin and layer polarization in WSe2. Phys. Rev. Lett. 115, 136803 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ. Science 297, 1148–1151 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, F. et al. Experimental signature of layer skyrmions and implications for band topology in twisted WSe2 bilayers. Preprint at https://arxiv.org/abs/2406.20036 (2025).

  • Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. Nature 635, 584–589 (2024).

    Article 

    Google Scholar
     

  • Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature https://doi.org/10.1038/s41586-024-08116-2 (2024).

  • Guo, Y. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025).

    Article 

    Google Scholar
     

  • Lin, Y.-C. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12, 965–975 (2018).

    Article 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Liu, S. et al. Two-step flux synthesis of ultrapure transition-metal dichalcogenides. ACS Nano 17, 16587–16596 (2023).

    Article 

    Google Scholar
     

  • Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yin, X., Shi, C., Han, Y. & Jiang, Y. PEAR: a robust and flexible automation framework for ptychography enabled by multiple large language model agents. Preprint at https://arxiv.org/abs/2410.09034 (2024).

  • Han, Y. et al. Strain mapping of two-dimensional heterostructures with subpicometer precision. Nano Lett. 18, 3746–3751 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Medeiros, P. V. C., Stafström, S. & Björk, J. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding. Phys. Rev. B 89, 041407 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Medeiros, P. V. C., Tsirkin, S. S., Stafström, S. & Björk, J. Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator. Phys. Rev. B 91, 041116 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Iraola, M. et al. IrRep: symmetry eigenvalues and irreducible representations of ab initio band structures. Comput. Phys. Commun. 272, 108226 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Li, Y. et al. Data for ‘Robust super-moiré pattern in large-angle single-twist bilayers’. figshare https://doi.org/10.6084/m9.figshare.28558070 (2025).