• Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, T. et al. Coherent optical clock down-conversion for microwave frequencies with 10–18 instability. Science 368, 889–892 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. & Vahala, K. Small-sized, ultra-low phase noise photonic microwave oscillators at X-Ka bands. Optica 10, 33–34 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lee, H. et al. Spiral resonators for on-chip laser frequency stabilization. Nat. Commun. 4, 2468 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Liu, K. et al. 36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator. Optica 9, 770–775 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article 

    Google Scholar
     

  • Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sun, S. et al. Integrated optical frequency division for microwave and mmWave generation. Nature 627, 540–545 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627, 534–539 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024).

    Article 
    ADS 

    Google Scholar
     

  • He, Y. et al. Chip-scale high-performance photonic microwave oscillator. Sci. Adv. 10, eado9570 (2024).

    Article 

    Google Scholar
     

  • Zhang, S. et al. Terahertz wave generation using a soliton microcomb. Opt. Express 27, 35257–35266 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wang, B. et al. Towards high-power, high-coherence, integrated photonic mmwave platform with microcavity solitons. Light: Sci. Appl. 10, 4 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Rappaport, T. S. et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019).

    Article 

    Google Scholar
     

  • Clivati, C. et al. A VLBI experiment using a remote atomic clock via a coherent fibre link. Sci. Rep. 7, 40992 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Taheri, H., Matsko, A. B. & Maleki, L. Optical lattice trap for Kerr solitons. Eur. Phys. J. D 71, 153 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wildi, T., Ulanov, A., Englebert, N., Voumard, T. & Herr, T. Sideband injection locking in microresonator frequency combs. APL Photon. 8, 120801 (2023).

  • Moille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624, 267–274 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Matsko, A. B. & Maleki, L. Low threshold Kerr solitons. Opt. Lett. 48, 715–718 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lu, Z. et al. Synthesized soliton crystals. Nat. Commun. 12, 3179 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Xie, X. et al. Improved power conversion efficiency in high-performance photodiodes by flip-chip bonding on diamond. Optica 1, 429–435 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jin, X. et al. Microresonator-referenced soliton microcombs with zeptosecond-level timing noise. Nat. Photon. https://doi.org/10.1038/s41566-025-01669-2 (2025).

  • Ji, Q.-X. et al. Dispersive-wave-agile optical frequency division. Nat. Photon. https://doi.org/10.1038/s41566-025-01667-4 (2025).

  • Stone, J. R. et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett. 121, 063902 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kwon, D. et al. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Sci. Rep. 7, 40917 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Liu, K. et al. Integrated photonic molecule Brillouin laser with a high-power sub-100-MHz fundamental linewidth. Opt. Lett. 49, 45–48 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Heffernan, B. M., Greenberg, J., Hori, T., Tanigawa, T. & Rolland, A. Brillouin laser-driven terahertz oscillator up to 3 THz with femtosecond-level timing jitter. Nat. Photon. 18, 1263–1268 (2024).

  • Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators. Optica 3, 1132–1135 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Q.-F., Yi, X., Yang, K. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).

    Article 

    Google Scholar
     

  • Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Opt. Lett. 41, 3419–3422 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sun, S. et al. Raw data for ‘microcavity Kerr optical frequency division with integrated SiN photonics’. Figshare https://doi.org/10.6084/m9.figshare.27629772 (2025).