• Rao, Q. & Frtunikj, J. Deep learning for self-driving cars: chances and challenges. In 2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS) 35–38 (IEEE, 2018).

  • Ker, J. & Wang, L. Deep learning applications in medical image analysis. IEEE Access 6, 9375–9389 (2018).

    Article 

    Google Scholar
     

  • Arkhangelskaya, E. O. & Nikolenko, S. I. Deep learning for natural language processing: a survey. J. Math. Sci. 273, 533–582 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kendall, A. & Gal, Y. What uncertainties do we need in Bayesian deep learning for computer vision? In Advances in Neural Information Processing Systems 30, 5575–5585 (NIPS, 2017).

  • Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. Nat. Electron. 6, 680–693 (2023).

    Article 

    Google Scholar
     

  • Friston, K. et al. The free energy principle made simpler but not too simple. Phys. Rep. 1024, 1–29 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article 

    Google Scholar
     

  • Liu, S. et al. Bayesian neural networks using magnetic tunnel junction-based probabilistic in-memory computing. Front. Nanotechnol. 4, 1021943 (2022).

    Article 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article 

    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article 

    Google Scholar
     

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article 

    Google Scholar
     

  • Brückerhoff-Plückelmann, F. et al. Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers. Nanophotonics 11, 4063–4072 (2022).

  • Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).

    Article 

    Google Scholar
     

  • Cao, G., Zhang, L., Huang, X., Hu, W. & Yang, X. 16.8 Tb/s true random number generator based on amplified spontaneous emission. IEEE Photon. Technol. Lett. 33, 699–702 (2021).

    Article 

    Google Scholar
     

  • Huang, M., Chen, Z., Zhang, Y. & Guo, H. A phase fluctuation based practical quantum random number generator scheme with delay-free structure. Appl. Sci. 10, 7 (2020).


    Google Scholar
     

  • Brückerhoff-Plückelmann, F. et al. Probabilistic photonic computing with chaotic light. Nat. Commun. 15, 10445 (2024).

  • Wu, C. et al. Harnessing optoelectronic noises in a photonic generative network. Sci. Adv. 8, eabm2956 (2022).

    Article 

    Google Scholar
     

  • Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article 

    Google Scholar
     

  • Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).

    Article 

    Google Scholar
     

  • Schuman, C. D. et al. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput Sci. 2, 10–19 (2022).

    Article 

    Google Scholar
     

  • Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

    Article 

    Google Scholar
     

  • Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

    Article 

    Google Scholar
     

  • Sludds, A. et al. Delocalized photonic deep learning on the internet’s edge. Science 378, 270–276 (2022).

    Article 

    Google Scholar
     

  • Ma, S.-Y., Wang, T., Laydevant, J., Wright, L. G. & McMahon, P. L. Quantum-noise-limited optical neural networks operating at a few quanta per activation. Nat. Commun. 16, 359 (2025).

    Article 

    Google Scholar
     

  • Chowdhury, S. et al. A full-stack view of probabilistic computing with p-bits: devices, architectures, and algorithms. IEEE J. Explor. Solid-State Comput. Devices Circuits 9, 1–11 (2023).

    Article 

    Google Scholar
     

  • Brückerhoff-Plückelmann, F. et al. Event-driven adaptive optical neural network. Sci. Adv. 9, eadi9127 (2023).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

    Article 

    Google Scholar
     

  • Li, G. H. Y. et al. All-optical, ultrafast energy-efficient ReLU function for nanophotonic neural networks. Nanophotonics 12, 847–855 (2022).

    Article 

    Google Scholar
     

  • Grottke, T., Hartmann, W., Schuck, C. & Pernice, W. H. P. Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range. Opt. Express 29, 5525–5537 (2021).

    Article 

    Google Scholar
     

  • Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, eaau5759 (2019).

    Article 

    Google Scholar
     

  • Xu, R. et al. Mode conversion trimming in asymmetric directional couplers enabled by silicon ion implantation. Nano Lett. 24, 10813–10819 (2024).

  • Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).

    Article 

    Google Scholar
     

  • Hamerly, R., Bandyopadhyay, S. & Englund, D. Asymptotically fault-tolerant programmable photonics. Nat. Commun. 13, 6831 (2022).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Microring weight banks. IEEE J. Sel. Top. Quantum Electron. 22, 312–325 (2016).

    Article 

    Google Scholar
     

  • Hu, J. et al. Diffractive optical computing in free space. Nat. Commun. 15, 1525 (2024).

    Article 

    Google Scholar
     

  • Farhat, N. H., Psaltis, D., Prata, A. & Paek, E. Optical implementations of the Hopfield model. Appl. Opt. 24, WB3 (1985).

    Article 

    Google Scholar
     

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article 

    Google Scholar
     

  • Bogaerts, W. et al. Silicon microring resonators. Laser Photon Rev. 6, 47–73 (2012).

    Article 

    Google Scholar
     

  • Messner, A. et al. Plasmonic, photonic, or hybrid? Reviewing waveguide geometries for electro-optic modulators. APL Photon. 8, 10 (2023).

    Article 

    Google Scholar
     

  • Bose, D. et al. Anneal-free ultra-low loss silicon nitride integrated photonics. Light Sci. Appl. 13, 156 (2024).

    Article 

    Google Scholar
     

  • Sebastian, A. et al. Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks. Nat. Commun. 13, 6139 (2022).

    Article 

    Google Scholar
     

  • Dutta, S. et al. Neural sampling machine with stochastic synapse allows brain-like learning and inference. Nat. Commun. 13, 2571 (2022).

    Article 

    Google Scholar
     

  • Wu, C., Yang, X., Chen, Y. & Li, M. Photonic Bayesian neural network using programmed optical noises. IEEE J. Sel. Top. Quantum Electron. https://doi.org/10.1109/JSTQE.2022.3217819 (2023).

  • Tran, M. A., Huang, D. & Bowers, J. E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration. APL Photon. 4, 11 (2019).

    Article 

    Google Scholar
     

  • Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron 18, 259–264 (1982).

    Article 

    Google Scholar
     

  • Lovic, V., Marangon, D. G., Lucamarini, M., Yuan, Z. & Shields, A. J. Characterizing phase noise in a gain-switched laser diode for quantum random-number generation. Phys. Rev. Appl. 16, 054012 (2021).

    Article 

    Google Scholar
     

  • Álvarez, J.-R., Sarmiento, S., Lázaro, J. A., Gené, J. M. & Torres, J. P. Random number generation by coherent detection of quantum phase noise. Opt. Express 28, 5538 (2020).

    Article 

    Google Scholar
     

  • Qi, B., Chi, Y.-M., Lo, H.-K. & Qian, L. High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt. Lett. 35, 312–314 (2010).

    Article 

    Google Scholar
     

  • Nie, Y. Q. et al. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Rev. Sci. Instrum. 86, 063105 (2015).

    Article 

    Google Scholar
     

  • Guo, H., Tang, W., Liu, Y. & Wei, W. Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 81, 051137 (2010).

    Article 

    Google Scholar
     

  • Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photon. 9, 151–162 (2015).

    Article 

    Google Scholar
     

  • Goodman, J. Statistical Optics (John Wiley & Sons, 2000).

  • Guo, Y. et al. 40 Gb/s quantum random number generation based on optically sampled amplified spontaneous emission. APL Photon. 6, 6 (2021).

    Article 

    Google Scholar
     

  • Zhang, L. et al. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci. Rep. 8, 4–11 (2017).


    Google Scholar
     

  • Shen, B. et al. Harnessing microcomb-based parallel chaos for random number generation and optical decision making. Nat. Commun. 14, 4590 (2023).

    Article 

    Google Scholar
     

  • Eaton, M. et al. Resolution of 100 photons and quantum generation of unbiased random numbers. Nat. Photon. 17, 106–111 (2023).

    Article 

    Google Scholar
     

  • Mattioli, F. et al. Photon-number-resolving superconducting nanowire detectors. Supercond. Sci. Technol. 28, 10 (2015).

    Article 

    Google Scholar
     

  • Aungskunsiri, K. et al. Quantum random number generation based on multi-photon detection. ACS Omega 8, 35085–35092 (2023).

    Article 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article 

    Google Scholar
     

  • Roques-Carmes, C. et al. Biasing the quantum vacuum to control macroscopic probability distributions. Science 381, 205–209 (2023).

    Article 

    Google Scholar
     

  • Choi, S. et al. Photonic probabilistic machine learning using quantum vacuum noise. Nat. Commun. 15, 7760 (2024).

    Article 

    Google Scholar
     

  • Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1988).

  • Jospin, L. V. et al. Hands-on Bayesian neural networks — A tutorial for deep learning users. IEEE Comput. Intell. Mag. 17, 29–48 (2022).

    Article 

    Google Scholar
     

  • Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).

  • Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. Camb. Explor. Arts Sci. https://doi.org/10.61603/ceas.v2i1.33 (2014).

  • Fahlman, S. E., Hinton, G. E. & Sejnowski, T. J. Massively parallel architectures for AI: NETL, Thistle, and Boltzmann machines. In Proc. AAAI-83 Conference (AAAI-Press) 109–113 (1983).

  • Bonnet, D. et al. Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks. Nat. Commun. 14, 7530 (2023).

    Article 

    Google Scholar
     

  • Langenegger, J. et al. In-memory factorization of holographic perceptual representations. Nat. Nanotechnol. 18, 479–485 (2023).

    Article 

    Google Scholar
     

  • Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat. Nanotechnol. 17, 507–513 (2022).

    Article 

    Google Scholar
     

  • Ramesh, A. et al. Zero-shot text-to-image generation. Proc. Mach. Learn. Res. 139, 8821–8831 (2021).


    Google Scholar
     

  • Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI (eds Navab, N. et al.) 12–20 (Lecture Notes in Computer Science 9351, Springer, 2015).

  • Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    Article 

    Google Scholar
     

  • Qiu, Y. L., Zheng, H. & Gevaert, O. Genomic data imputation with variational auto-encoders. GigaScience 9, giaa082 (2020).

    Article 

    Google Scholar
     

  • McCoy, J. T., Kroon, S. & Auret, L. Variational autoencoders for missing data imputation with application to a simulated milling circuit. IFAC-PapersOnLine 51, 141–146 (2018).

  • Wang, T. et al. Image sensing with multilayer, nonlinear optical neural networks. Nat Photon. 17, 408–415 (2023).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Sci. Adv. 9, eadf8437 (2023).

  • Sharma, M., Farquhar, S., Nalisnick, E. & Rainforth, T. Do Bayesian neural networks need to be fully stochastic? Proc. Mach. Learn. Res. 206, 7694–7722 (2023).


    Google Scholar
     

  • Lambert, B., Forbes, F., Doyle, S., Dehaene, H. & Dojat, M. Trustworthy clinical AI solutions: a unified review of uncertainty quantification in Deep Learning models for medical image analysis. Artif. Intell. Med. 150, 102830 (2024).

    Article 

    Google Scholar
     

  • Syed, G. S. & Sebastian, A. Solving optimization problems with photonic crossbars. US patent US20230176606A1 (2021).

  • Gibney, E. & Castelvecchi, D. Physics Nobel scooped by machine-learning pioneers. Nature 634, 523–524 (2024).

    Article 

    Google Scholar
     

  • Roques-Carmes, C. et al. Heuristic recurrent algorithms for photonic Ising machines. Nat. Commun. 11, 249 (2020).

    Article 

    Google Scholar
     

  • Fan, Z., Lin, J., Dai, J., Zhang, T. & Xu, K. Photonic Hopfield neural network for the Ising problem. Opt. Express 31, 21340 (2023).

    Article 

    Google Scholar
     

  • Attneave, F., B, M. & Hebb, D. O. The organization of behavior; a neuropsychological theory. Am. J. Psychol. 63, 633–642 (1950).

    Article 

    Google Scholar
     

  • Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363–379 (2022).

    Article 

    Google Scholar
     

  • Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).

    Article 

    Google Scholar
     

  • Hopfield, J. J. & Tank, D. W. ‘Neural’ computation of decisions in optimization problems. Biol. Cybern. 52, 141–152 (1985).

    Article 

    Google Scholar
     

  • Aarts, E. H. L. & Korst, J. H. M. Boltzmann machines for travelling salesman problems. Eur. J. Oper. Res. 39, 79–95 (1989).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article 
    MathSciNet 

    Google Scholar
     

  • Frady, E. P., Kent, S. J., Olshausen, B. A. & Sommer, F. T. Resonator networks, 1: an efficient solution for factoring high-dimensional, distributed representations of data structures. Neural Comput. 32, 2311–2331 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kent, S. J., Frady, E. P., Sommer, F. T. & Olshausen, B. A. Resonator networks, 2: factorization performance and capacity compared to optimization-based methods. Neural Comput. 32, 2332–2388 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hersche, M., Zeqiri, M., Benini, L., Sebastian, A. & Rahimi, A. A neuro-vector-symbolic architecture for solving Raven’s progressive matrices. Nat. Mach. Intell. 5, 363–375 (2023).

    Article 

    Google Scholar
     

  • Khaddam-Aljameh, R. et al. HERMES-Core-A 1.59-TOPS/mm2PCM on 14-nm CMOS in-memory compute core using 300-ps/LSB linearized CCO-based ADCs. IEEE J. Solid-State Circuits 57, 1027–1038 (2022).

    Article 

    Google Scholar
     

  • Hua, S. et al. An integrated large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).

    Article 

    Google Scholar
     

  • Tsakyridis, A. et al. Photonic neural networks and optics-informed deep learning fundamentals. APL Photon. 9, 1 (2024).

    Article 

    Google Scholar
     

  • Rasch, M. J. et al. Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators. Nat. Commun. 14, 5282 (2023).

    Article 

    Google Scholar
     

  • Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).

    Article 

    Google Scholar
     

  • Momeni, A., Rahmani, B., Malléjac, M., del Hougne, P. & Fleury, R. Backpropagation-free training of deep physical neural networks. Science 382, 1297–1304 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

    Article 

    Google Scholar
     

  • Varri, A. et al. Noise-resilient photonic analog neural networks. J. Lightwave Technol. 42, 7969–7976 (2024).

  • Jain, S. et al. A heterogeneous and programmable compute-in-memory accelerator architecture for analog-AI using dense 2-D mesh. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 31, 114–127 (2023).

    Article 

    Google Scholar
     

  • Dazzi, M. et al. 5 Parallel Prism: a topology for pipelined implementations of convolutional neural networks using computational memory. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019).