• Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

  • Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627, 534–539 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, S. et al. Integrated optical frequency division for microwave and mmwave generation. Nature 627, 540–545 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Soltani, M., Matsko, A. & Maleki, L. Enabling arbitrary wavelength frequency combs on chip. Laser Photonics Rev. 10, 158–162 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, S. H. et al. Towards visible soliton microcomb generation. Nat. Commun. 8, 1295 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karpov, M., Pfeiffer, M. H., Liu, J., Lukashchuk, A. & Kippenberg, T. J. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun. 9, 1146 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, S.-P. et al. Tuning Kerr-soliton frequency combs to atomic resonances. Phys. Rev. Appl. 11, 044017 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Visible nonlinear photonics via high-order-mode dispersion engineering. Optica 7, 135–141 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Briles, T. C., Yu, S.-P., Drake, T. E., Stone, J. R. & Papp, S. B. Generating octave-bandwidth soliton frequency combs with compact low-power semiconductor lasers. Phys. Rev. Appl. 14, 014006 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jin, W. et al. Hertz-linewidth semiconductor lasers using cmos-ready ultra-high-q microresonators. Nat. Photon. 14, 346–352 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Puckett, M. W. et al. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-mhz linewidth. Nat. Commun. 12, 934 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, Z. et al. Soliton pulse pairs at multiple colours in normal dispersion microresonators. Nat. Photonics 17, 977–983 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morin, T. J. et al. Cmos-foundry-based blue and violet photonics. Optica 8, 755–756 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Corato-Zanarella, M., Ji, X., Mohanty, A. & Lipson, M. Absorption and scattering limits of silicon nitride integrated photonics in the visible spectrum. Opt. Express 32, 5718–5728 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moille, G., Westly, D., Shrestha, R., Hoang, K. T. & Srinivasan, K. Broadband Visible Wavelength Microcomb Generation In Silicon Nitride Microrings Through Air-Clad Dispersion Engineering. Laser Photonics Rev. 2401746 (2025).

  • Chen, H.-J. et al. Chaos-assisted two-octave-spanning microcombs. Nat. Commun. 11, 2336 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Q.-X. et al. Multimodality integrated microresonators using the moiré speedup effect. Science 383, 1080–1083 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, M. et al. Observation of interband Kelly sidebands in coupled-ring soliton microcombs. Optica 11, 940–944 (2024).

    Article 

    Google Scholar
     

  • Luo, R., Liang, H. & Lin, Q. Multicolor cavity soliton. Opt. Express 24, 16777–16787 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S., Silver, J. M., Bi, T. & Del’Haye, P. Spectral extension and synchronization of microcombs in a single microresonator. Nat. Commun. 11, 6384 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menyuk, C. R., Shandilya, P., Courtright, L., Moille, G. & Srinivasan, K. Multi-color solitons and frequency combs in microresonators. Opt. Express 33, 21824–21835 (2025).

  • Liu, K. et al. Ultralow 0.034 db/m loss wafer-scale integrated photonics realizing 720 million q and 380 μw threshold brillouin lasing. Opt. Lett. 47, 1855–1858 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauters, J. F. et al. Ultra-low-loss high-aspect-ratio si 3 n 4 waveguides. Opt. Express 19, 3163–3174 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, C. et al. Interleaved difference-frequency generation for microcomb spectral densification in the mid-infrared. Optica 7, 309–315 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bao, C. et al. Architecture for microcomb-based ghz-mid-infrared dual-comb spectroscopy. Nat. Commun. 12, 6573 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H. et al. Germano-silicate Ultra-low Loss Photonic Integrated Circuits Across Visible and Near-infrared Spectrum. In CLEO 2024, Technical Digest Series (Optica Publishing Group, 2024), paper STh5C.1.

  • Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J., Lee, H., Yang, K. Y. & Vahala, K. J. Sideband spectroscopy and dispersion measurement in microcavities. Opt. Express 20, 26337–26344 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yi, X., Yang, Q.-F., Youl, K. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar