• Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Rančić, M., Hedges, M. P., Ahlefeldt, R. L. & Sellars, M. J. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys. 14, 50–54 (2018).

    Article 

    Google Scholar
     

  • Ortu, A. et al. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater. 17, 671–675 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Böttger, T., Thiel, C. W., Cone, R. L. & Sun, Y. Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5. Phys. Rev. B 79, 115104 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Equall, R. W., Sun, Y., Cone, R. L. & Macfarlane, R. M. Ultraslow optical dephasing in Eu3+:Y2SiO5. Phys. Rev. Lett. 72, 2179–2182 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Le Dantec, M. et al. Twenty-three–millisecond electron spin coherence of erbium ions in a natural-abundance crystal. Sci. Adv. 7, eabj9786 (2021).

  • Sun, Y., Thiel, C. W., Cone, R. L., Equall, R. W. & Hutcheson, R. L. Recent progress in developing new rare earth materials for hole burning and coherent transient applications. J. Lumin. 98, 281–287 (2002).

    Article 

    Google Scholar
     

  • Fraval, E., Sellars, M. J. & Longdell, J. J. Method of extending hyperfine coherence times in Pr3+:Y2SiO5. Phys. Rev. Lett. 92, 077601 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Wolfowicz, G. et al. Atomic clock transitions in silicon-based spin qubits. Nat. Nanotechnol. 8, 561–564 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mohammady, M. H., Morley, G. W. & Monteiro, T. S. Bismuth qubits in silicon: the role of EPR cancellation resonances. Phys. Rev. Lett. 105, 067602 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ahlefeldt, R. L., Manson, N. B. & Sellars, M. J. Optical lifetime and linewidth studies of the 7F0 → 5D0 transition in EuCl3 ⋅ 6H2O: a potential material for quantum memory applications. J. Lumin. 133, 152–156 (2013).

    Article 

    Google Scholar
     

  • Berrington, M. C. et al. Negative refractive index in dielectric crystals containing stoichiometric rare-earth ions. Adv. Opt. Mater. 11, 2301167 (2023).

    Article 

    Google Scholar
     

  • Everts, J. R. et al. Ultrastrong coupling between a microwave resonator and antiferromagnetic resonances of rare-earth ion spins. Phys. Rev. B 101, 214414 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Awschalom, D. et al. Development of quantum interconnects for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article 

    Google Scholar
     

  • Lambert, N. J., Rueda, A., Sedlmeir, F. & Schwefel, H. G. L. Coherent conversion between microwave and optical photons—an overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2020).

    Article 

    Google Scholar
     

  • Wang, C.-H., Li, F. & Jiang, L. Quantum capacities of transducers. Nat. Commun. 13, 6698 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Higginbotham, A. P. et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nat. Phys. 14, 1038–1042 (2018).

    Article 

    Google Scholar
     

  • Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, C. et al. Heralded generation and detection of entangled microwave–optical photon pairs. Phys. Rev. Lett. 124, 010511 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tu, H.-T. et al. High-efficiency coherent microwave-to-optics conversion via off-resonant scattering. Nat. Photonics 16, 291–296 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Vogt, T. et al. Efficient microwave-to-optical conversion using Rydberg atoms. Phys. Rev. A 99, 023832 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, N. et al. Waveguide cavity optomagnonics for microwave-to-optics conversion. Optica 7, 1291–1297 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Everts, J. R., Berrington, M. C., Ahlefeldt, R. L. & Longdell, J. J. Microwave to optical photon conversion via fully concentrated rare-earth-ion crystals. Phys. Rev. A 99, 063830 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Xie, T., Fukumori, R., Li, J. & Faraon, A. Scalable microwave-to-optical transducers at the single-photon level with spins. Nat. Phys. https://doi.org/10.1038/s41567-025-02884-y (2025).

    Article 

    Google Scholar
     

  • Puel, T. O., et al.) PC126561E (SPIE, 2023).

  • Puel, T. O., Turflinger, A. T., Horvath, S. P., Thompson, J. & Flatté, M. E. Enhancement of microwave to optical spin-based quantum transduction via a magnon mode. In Proc. Quantum Computing, Communication, and Simulation IV, Vol. PC12911 (eds Hemmer, P. R. & Migdall, A. L.) PC129110H (SPIE, 2024).

  • Puel, T. O., Turflinger, A. T., Horvath, S. P., Thompson, J. D. & Flatté, M. E. Enhancement of microwave to optical spin-based quantum transduction via a magnon mode. Preprint at arxiv.org/abs/2411.12870 (2024).

  • Milligan, W. O. & Vernon, L. W. Crystal structure of heavy metal orthovanadates. J. Phys. Chem. 56, 145–147 (1952).

    Article 

    Google Scholar
     

  • Cashion, J. D., Cooke, A. H., Hoel, L. A., Martin, D. M. & Wells, M. R. Proc. International Symposium on Rare Earths (Centre National de la Recherche Scientifique, 1970).

  • Xie, T. et al. Characterization of Er3+:YVO4 for microwave to optical transduction. Phys. Rev. B 104, 054111 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, P.-Y. et al. Optical spectroscopy and coherent dynamics of 167Er3+:YVO4 at 1.5 μm below 1 K. J. Lumin. 225, 117344 (2020).

    Article 

    Google Scholar
     

  • Page, J. H. & Rosenberg, H. M. Ultrasonic attenuation in GdVO4 at 9 GHz. J. Phys. C. 10, 353–367 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Bertini, C., Toncelli, A., Tonelli, M., Cavalli, E. & Magnani, N. Optical spectroscopy and laser parameters of GdVO4:Er3+. J. Lumin. 106, 235–242 (2004).

    Article 

    Google Scholar
     

  • Laplane, C., Zambrini Cruzeiro, E., Fröwis, F., Goldner, P. & Afzelius, M. High-precision measurement of the Dzyaloshinsky-Moriya interaction between two rare-earth ions in a solid. Phys. Rev. Lett. 117, 037203 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Jongerden, G. J., Kil, A. J., Dijkhuis, J. I., Arts, A. F. & De Wijn, H. W. Optical generation of magnons by direct spin-magnon relaxation in MnF2: Er3+. J. Phys. Colloq. 46, C7-241–C7-245 (1985).

    Article 

    Google Scholar
     

  • Abraham, M. M., Baker, J. M., Bleaney, B., Pfeffer, J. Z. & Wells, M. R. Antiferromagnetic resonance in GdVO4. J. Phys. Condens. Matter 4, 5443–5446 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Kanai, S. et al. Generalized scaling of spin qubit coherence in over 12,000 host materials. Proc. Natl Acad. Sci. USA 119, e2121808119 (2022).

    Article 

    Google Scholar
     

  • Singh, M. K. et al. Epitaxial Er-doped Y2O3 on silicon for quantum coherent devices. APL Mater. 8, 031111 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Article 
    ADS 

    Google Scholar
     

  • O’Brien, C., Lauk, N., Blum, S., Morigi, G. & Fleischhauer, M. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Williamson, L. A., Chen, Y.-H. & Longdell, J. J. Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113, 203601 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Welinski, S. et al. Electron spin coherence in optically excited states of rare-earth ions for microwave to optical quantum transducers. Phys. Rev. Lett. 122, 247401 (2019).

    Article 
    ADS 

    Google Scholar
     

  • King, G. G. G., Barnett, P. S., Bartholomew, J. G., Faraon, A. & Longdell, J. J. Probing strong coupling between a microwave cavity and a spin ensemble with Raman heterodyne spectroscopy. Phys. Rev. B 103, 214305 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fernandez-Gonzalvo, X., Horvath, S. P., Chen, Y.-H. & Longdell, J. J. Cavity-enhanced Raman heterodyne spectroscopy in Er3+:Y2SiO5 for microwave to optical signal conversion. Phys. Rev. A 100, 033807 (2019).

    Article 
    ADS 

    Google Scholar
     

  • DeVoe, R. G., Szabo, A., Rand, S. C. & Brewer, R. G. Ultraslow optical dephasing of LaF3:Pr3+. Phys. Rev. Lett. 42, 1560–1563 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Rezende, S. M., Azevedo, A. & Rodríguez-Suárez, R. L. Introduction to antiferromagnetic magnons. J. Appl. Phys. 126, 151101 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Longdell, J. J. Dieke: crystal field calculation for rare earths. GitHub https://github.com/jevonlongdell/dieke (2024).