• Gu, T., Kim, H. J., Rivero-Baleine, C. & Hu, J. Reconfigurable metasurfaces towards commercial success. Nat. Photon. 17, 48–58 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kuznetsov, A. I. et al. Roadmap for optical metasurfaces. ACS Photon. 11, 816–865 (2024).

    Article 

    Google Scholar
     

  • Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Qiu, C., Zhang, T., Hu, G. & Kivshar, Y. Quo vadis, metasurfaces?. Nano Lett. 21, 5461–5474 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yu, N. et al. Light propagation with phase reflection and refraction. Science 334, 333–337 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Altug, H., Oh, S.-H., Maier, S. A. & Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vabishchevich, P. & Kivshar, Y. Nonlinear photonics with metasurfaces. Photon. Res. 11, B50 (2023).

    Article 

    Google Scholar
     

  • Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article 

    Google Scholar
     

  • Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).


    Google Scholar
     

  • Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Montblanch, A. R.-P., Barbone, M., Aharonovich, I., Atatüre, M. & Ferrari, A. C. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019).

    Article 

    Google Scholar
     

  • Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article 

    Google Scholar
     

  • Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article 

    Google Scholar
     

  • Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Guan, J. et al. Light–matter interactions in hybrid material metasurfaces. Chem. Rev. 122, 15177–15203 (2022).

    Article 

    Google Scholar
     

  • Zhang, M. et al. Observation of ultra-large Rabi splitting in the plasmon-exciton polaritons at room temperature. Nanophotonics 12, 3267–3275 (2023).

    Article 

    Google Scholar
     

  • Khurgin, J. B. Expanding the photonic palette: exploring high index materials. ACS Photon. 9, 743–751 (2022).

    Article 

    Google Scholar
     

  • Ermolaev, G. A. et al. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 854 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lin, H. et al. Engineering van der Waals materials for advanced metaphotonics. Chem. Rev. 122, 15204–15355 (2022).

    Article 

    Google Scholar
     

  • van de Groep, J. et al. Exciton resonance tuning of an atomically thin lens. Nat. Photon. 14, 426–430 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Herzig Sheinfux, H. et al. High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. Nat. Mater. 23, 499–505 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Guo, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nat. Nanotechnol. 18, 529–534 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article 

    Google Scholar
     

  • Kang, M., Liu, T., Chan, C. T. & Xiao, M. Applications of bound states in the continuum in photonics. Nat. Rev. Phys. 5, 659–678 (2023).

    Article 

    Google Scholar
     

  • Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kühner, L. et al. High‐Q nanophotonics over the full visible spectrum enabled by hexagonal boron nitride metasurfaces. Adv. Mater. 35, 2209688 (2023).

    Article 

    Google Scholar
     

  • Sortino, L. et al. Optically addressable spin defects coupled to bound states in the continuum metasurfaces. Nat. Commun. 15, 2008 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Bernhardt, N. et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett. 20, 5309–5314 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Weber, T. et al. Intrinsic strong light–matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater. 22, 970–976 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Maggiolini, E. et al. Strongly enhanced light–matter coupling of monolayer WS2 from a bound state in the continuum. Nat. Mater. 22, 964–969 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Schneider, C., Glazov, M. M., Korn, T., Höfling, S. & Urbaszek, B. Two-dimensional semiconductors in the regime of strong light–matter coupling. Nat. Commun. 9, 2695 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kleemann, M.-E. et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 8, 1296 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Louca, C. et al. Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers. Nat. Commun. 14, 3818 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ghosh, S. et al. Microcavity exciton polaritons at room temperature. Photon. Insights 1, R04 (2022).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors. Sci. Bull. 67, 359–366 (2022).

    Article 

    Google Scholar
     

  • Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kavokin, A. et al. Polariton condensates for classical and quantum computing. Nat. Rev. Phys. 4, 435–451 (2022).

    Article 

    Google Scholar
     

  • Nigro, D. & Gerace, D. Theory of exciton-polariton condensation in gap-confined eigenmodes. Phys. Rev. B 108, 085305 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J. et al. Exciton polariton interactions in van der Waals superlattices at room temperature. Nat. Commun. 14, 1512 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Takemura, N. et al. Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime. Phys. Rev. B 92, 235305 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sie, E. J. et al. Observation of exciton redshift–blueshift crossover in monolayer WS2. Nano Lett. 17, 4210–4216 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cao, H. et al. Transition from a microcavity exciton polariton to a photon laser. Phys. Rev. A 55, 4632–4635 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Prokhorov, A. V. et al. Lasing effect in symmetrical van der Waals heterostructured metasurfaces due to lattice-induced multipole coupling. Nano Lett. 23, 11105–11111 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Reeves, L., Wang, Y. & Krauss, T. F. 2D material microcavity light emitters: to lase or not to lase? Adv. Opt. Mater. 6, 1800272 (2018).

    Article 

    Google Scholar
     

  • Barachati, F. et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 13, 906–909 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kravtsov, V. et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light: Sci. Appl. 9, 56 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Tang, Y. et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. Light: Sci. Appl. 11, 94 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ballarini, D. & De Liberato, S. Polaritonics: from microcavities to sub-wavelength confinement. Nanophotonics 8, 641–654 (2019).

    Article 

    Google Scholar
     

  • Sortino, L. et al. Data for: Sortino et al. Atomic-layer assembly of ultrathin optical cavities in van der Waals heterostructure metasurfaces. Zenodo https://doi.org/10.5281/zenodo.5050747 (2025).