Bloembergen, N. Nonlinear optics and spectroscopy. Rev. Mod. Phys. 54, 685–695 (1982).
Lakshmanan, M. & Rajaseekar, S. Nonlinear Dynamics: Integrability, Chaos and Patterns (Springer Science & Business Media, 2012).
Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).
Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).
Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).
Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).
Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).
Du, Z. Z., Lu, H.-Z. & Xie, X. C. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).
Wang, C., Gao, Y. & Xiao, D. Intrinsic nonlinear Hall effect in antiferromagnetic tetragonal CuMnAs. Phys. Rev. Lett. 127, 277201 (2021).
Liu, H. et al. Intrinsic second-order anomalous Hall effect and its application in compensated antiferromagnets. Phys. Rev. Lett. 127, 277202 (2021).
Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).
Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).
Resta, R. The insulating state of matter: a geometrical theory. Eur. Phys. J. B 79, 121–137 (2011).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Godinho, J. et al. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. Nat. Commun. 9, 4686 (2018).
Shao, D.-F., Zhang, S.-H., Gurung, G., Yang, W. & Tsymbal, E. Y. Nonlinear anomalous Hall effect for Néel vector detection. Phys. Rev. Lett. 124, 067203 (2020).
Chen, W., Gu, M., Li, J., Wang, P. & Liu, Q. Role of hidden spin polarization in nonreciprocal transport of antiferromagnets. Phys. Rev. Lett. 129, 276601 (2022).
Wang, J., Zeng, H., Duan, W. & Huang, H. Intrinsic nonlinear Hall detection of the Néel vector for two-dimensional antiferromagnetic spintronics. Phys. Rev. Lett. 131, 056401 (2023).
Watanabe, H. & Yanase, Y. Nonlinear electric transport in odd-parity magnetic multipole systems: Application to Mn-based compounds. Phys. Rev. Res. 2, 043081 (2020).
Kaplan, D., Holder, T. & Yan, B. Unification of nonlinear anomalous Hall effect and nonreciprocal magnetoresistance in metals by the quantum geometry. Phys. Rev. Lett. 132, 026301 (2024).
Zhong, J. et al. Interface-induced Berry-curvature dipole and second-order nonlinear Hall effect in two-dimensional Fe5GeTe2. Phys. Rev. Appl. 21, 024044 (2024).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).
Du, Z. Z., Wang, C. M., Lu, H.-Z. & Xie, X. C. Band signatures for strong nonlinear Hall effect in bilayer WTe2. Phys. Rev. Lett. 121, 266601 (2018).
Zhou, B. T., Zhang, C.-P. & Law, K. T. Highly tunable nonlinear Hall effects induced by spin-orbit couplings in strained polar transition-metal dichalcogenides. Phys. Rev. Appl. 13, 024053 (2020).
Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).
Smolyanyuk, A., Mazin, I. I., Garcia-Gassull, L. & Valentí, R. Fragility of the magnetic order in the prototypical altermagnet RuO2. Phys. Rev. B 109, 134424 (2024).
Hiraishi, M. et al. Nonmagnetic ground state in RuO2 revealed by Muon spin rotation. Phys. Rev. Lett. 132, 166702 (2024).
Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).
Das, K., Lahiri, S., Atencia, R. B., Culcer, D. & Agarwal, A. Intrinsic nonlinear conductivities induced by the quantum metric. Phys. Rev. B 108, L201405 (2023).
Wang, Y., Zhang, Z., Zhu, Z.-G. & Su, G. Intrinsic nonlinear Ohmic current. Phys. Rev. B 109, 085419 (2024).
Nagaosa, N. & Tokura, Y. Emergent electromagnetism in solids. Phys. Scr. 2012, 014020 (2012).
Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn. 88, 123702 (2019).
Yuan, L.-D., Wang, Z., Luo, J.-W. & Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling. Phys. Rev. Mater. 5, 014409 (2021).
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).
Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).
Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).
Yan, H., Zhou, X., Qin, P. & Liu, Z. Review on spin-split antiferromagnetic spintronics. Appl. Phys. Lett. 124, 030503 (2024).
Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).
Zhang, Y., Železný, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a noncollinear magnetic lattice without spin–orbit coupling. N. J. Phys. 20, 073028 (2018).
González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).
Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).
Shao, D.-F. et al. Néel spin currents in antiferromagnets. Phys. Rev. Lett. 130, 216702 (2023).
Watanabe, H., Shinohara, K., Nomoto, T., Togo, A. & Arita, R. Symmetry analysis with spin crystallographic groups: disentangling effects free of spin-orbit coupling in emergent electromagnetism. Phys. Rev. B 109, 094438 (2024).
Kirikoshi, A. & Hayami, S. Microscopic mechanism for intrinsic nonlinear anomalous Hall conductivity in noncollinear antiferromagnetic metals. Phys. Rev. B 107, 155109 (2023).
Zhang, Z.-F., Zhu, Z.-G. & Su, G. Symmetry dictionary on charge and spin nonlinear responses for all magnetic point groups with nontrivial topological nature. Natl Sci. Rev. 10, nwad104 (2023).
Brinkman, W. F. & Elliott, R. J. Theory of spin-space groups. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 294, 343–358 (1966).
Litvin, D. B. & Opechowski, W. Spin groups. Physica 76, 538–554 (1974).
Liu, P., Li, J., Han, J., Wan, X. & Liu, Q. Spin-group symmetry in magnetic materials with negligible spin-orbit coupling. Phys. Rev. X 12, 021016 (2022).
Chen, X. et al. Enumeration and representation theory of spin space groups. Phys. Rev. X 14, 031038 (2024).
Xiao, Z., Zhao, J., Li, Y., Shindou, R. & Song, Z.-D. Spin space groups: full classification and applications. Phys. Rev. X 14, 031037 (2024).
Jiang, Y. et al. Enumeration of spin-space groups: toward a complete description of symmetries of magnetic orders. Phys. Rev. X 14, 031039 (2024).
Yang, J., Liu, Z.-X. & Fang, C. Symmetry invariants and classes of quasiparticles in magnetically ordered systems having weak spin-orbit coupling. Nat. Commun. 15, 10203 (2024).
Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349–354 (2025).
Gallego, S. V. et al. MAGNDATA: towards a database of magnetic structures. I. The commensurate case. J. Appl. Crystallogr. 49, 1750–1776 (2016).
Gallego, S. V. et al. MAGNDATA: towards a database of magnetic structures. II. The incommensurate case. J. Appl. Crystallogr. 49, 1941–1956 (2016).
Liu, Q., Dai, X. & Blügel, S. Different facets of unconventional magnetism. Nat. Phys. 21, 329–331 (2025).
Gosálbez-Martínez, D., Souza, I. & Vanderbilt, D. Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe. Phys. Rev. B 92, 085138 (2015).
Ba, J.-Y., Wang, Y.-M., Duan, H.-J., Deng, M.-X. & Wang, R.-Q. Nonlinear planar Hall effect induced by interband transitions: Application to surface states of topological insulators. Phys. Rev. B 108, L241104 (2023).
Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).
Du, Z. Z., Wang, C. M., Sun, H.-P., Lu, H.-Z. & Xie, X. C. Quantum theory of the nonlinear Hall effect. Nat. Commun. 12, 5038 (2021).
de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).
Lu, K. et al. Canted antiferromagnetic order in the monoaxial chiral magnets V1/3TaS2 and V1/3NbS2. Phys. Rev. Mater. 4, 054416 (2020).
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).
Corliss, L. M., Elliott, N., Hastings, J. M. & Sass, R. L. Magnetic structure of chromium selenide. Phys. Rev. 122, 1402–1406 (1961).
Tajima, Y. et al. Non-coplanar spin structure in a metallic thin film of triangular lattice antiferromagnet CrSe. APL Mater. 12, 041112 (2024).
Arevalo-Lopez, A. M. & Attfield, J. P. Crystal and magnetic structures of the brownmillerite Ca2Cr2O5. Dalton Trans. 44, 10661–10664 (2015).
Boehm, M. et al. Complex magnetic ground state of CuB2O4. Phys. Rev. B 68, 024405 (2003).
Eriksson, T., Bergqvist, L., Andersson, Y., Nordblad, P. & Eriksson, O. Magnetic properties of selected Mn-based transition metal compounds with β-Mn structure: experiments and theory. Phys. Rev. B 72, 144427 (2005).
Ahn, J., Guo, G.-Y. & Nagaosa, N. Low-frequency divergence and quantum geometry of the bulk photovoltaic effect in topological semimetals. Phys. Rev. X 10, 041041 (2020).
Xiao, C. et al. Intrinsic nonlinear electric spin generation in centrosymmetric magnets. Phys. Rev. Lett. 129, 086602 (2022).
Xiao, C. et al. Time-reversal-even nonlinear current induced spin polarization. Phys. Rev. Lett. 130, 166302 (2023).
Lai, S. et al. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol. 16, 869–873 (2021).
Liu, H. et al. Berry connection polarizability tensor and third-order Hall effect. Phys. Rev. B 105, 045118 (2022).
Zhang, C.-P., Gao, X.-J., Xie, Y.-M., Po, H. C. & Law, K. T. Higher-order nonlinear anomalous Hall effects induced by Berry curvature multipoles. Phys. Rev. B 107, 115142 (2023).
Mandal, D., Sarkar, S., Das, K. & Agarwal, A. Quantum geometry induced third-order nonlinear transport responses. Phys. Rev. B 110, 195131 (2024).
Fang, Y., Cano, J. & Ghorashi, S. A. A. Quantum geometry induced nonlinear transport in altermagnets. Phys. Rev. Lett. 133, 106701 (2024).
Liu, X., Tsirkin, S. S. & Souza, I. Covariant derivatives of Berry-type quantities: application to nonlinear transport. Preprint at https://arxiv.org/abs/2303.10129 (2023).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).
Tsirkin, S. S. High performance Wannier interpolation of Berry curvature and related quantities with WannierBerri code. npj Comput. Mater. 7, 33 (2021).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).