• Bloembergen, N. Nonlinear optics and spectroscopy. Rev. Mod. Phys. 54, 685–695 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lakshmanan, M. & Rajaseekar, S. Nonlinear Dynamics: Integrability, Chaos and Patterns (Springer Science & Business Media, 2012).

  • Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, Z. Z., Lu, H.-Z. & Xie, X. C. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).

    Article 

    Google Scholar
     

  • Wang, C., Gao, Y. & Xiao, D. Intrinsic nonlinear Hall effect in antiferromagnetic tetragonal CuMnAs. Phys. Rev. Lett. 127, 277201 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. Intrinsic second-order anomalous Hall effect and its application in compensated antiferromagnets. Phys. Rev. Lett. 127, 277202 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Resta, R. The insulating state of matter: a geometrical theory. Eur. Phys. J. B 79, 121–137 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Godinho, J. et al. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. Nat. Commun. 9, 4686 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, D.-F., Zhang, S.-H., Gurung, G., Yang, W. & Tsymbal, E. Y. Nonlinear anomalous Hall effect for Néel vector detection. Phys. Rev. Lett. 124, 067203 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W., Gu, M., Li, J., Wang, P. & Liu, Q. Role of hidden spin polarization in nonreciprocal transport of antiferromagnets. Phys. Rev. Lett. 129, 276601 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J., Zeng, H., Duan, W. & Huang, H. Intrinsic nonlinear Hall detection of the Néel vector for two-dimensional antiferromagnetic spintronics. Phys. Rev. Lett. 131, 056401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, H. & Yanase, Y. Nonlinear electric transport in odd-parity magnetic multipole systems: Application to Mn-based compounds. Phys. Rev. Res. 2, 043081 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kaplan, D., Holder, T. & Yan, B. Unification of nonlinear anomalous Hall effect and nonreciprocal magnetoresistance in metals by the quantum geometry. Phys. Rev. Lett. 132, 026301 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, J. et al. Interface-induced Berry-curvature dipole and second-order nonlinear Hall effect in two-dimensional Fe5GeTe2. Phys. Rev. Appl. 21, 024044 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Du, Z. Z., Wang, C. M., Lu, H.-Z. & Xie, X. C. Band signatures for strong nonlinear Hall effect in bilayer WTe2. Phys. Rev. Lett. 121, 266601 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, B. T., Zhang, C.-P. & Law, K. T. Highly tunable nonlinear Hall effects induced by spin-orbit couplings in strained polar transition-metal dichalcogenides. Phys. Rev. Appl. 13, 024053 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smolyanyuk, A., Mazin, I. I., Garcia-Gassull, L. & Valentí, R. Fragility of the magnetic order in the prototypical altermagnet RuO2. Phys. Rev. B 109, 134424 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hiraishi, M. et al. Nonmagnetic ground state in RuO2 revealed by Muon spin rotation. Phys. Rev. Lett. 132, 166702 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Das, K., Lahiri, S., Atencia, R. B., Culcer, D. & Agarwal, A. Intrinsic nonlinear conductivities induced by the quantum metric. Phys. Rev. B 108, L201405 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y., Zhang, Z., Zhu, Z.-G. & Su, G. Intrinsic nonlinear Ohmic current. Phys. Rev. B 109, 085419 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Emergent electromagnetism in solids. Phys. Scr. 2012, 014020 (2012).

    Article 

    Google Scholar
     

  • Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn. 88, 123702 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, L.-D., Wang, Z., Luo, J.-W. & Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling. Phys. Rev. Mater. 5, 014409 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).


    Google Scholar
     

  • Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, H., Zhou, X., Qin, P. & Liu, Z. Review on spin-split antiferromagnetic spintronics. Appl. Phys. Lett. 124, 030503 (2024).

  • Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Železný, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a noncollinear magnetic lattice without spin–orbit coupling. N. J. Phys. 20, 073028 (2018).

    Article 

    Google Scholar
     

  • González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, D.-F. et al. Néel spin currents in antiferromagnets. Phys. Rev. Lett. 130, 216702 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, H., Shinohara, K., Nomoto, T., Togo, A. & Arita, R. Symmetry analysis with spin crystallographic groups: disentangling effects free of spin-orbit coupling in emergent electromagnetism. Phys. Rev. B 109, 094438 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kirikoshi, A. & Hayami, S. Microscopic mechanism for intrinsic nonlinear anomalous Hall conductivity in noncollinear antiferromagnetic metals. Phys. Rev. B 107, 155109 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Z.-F., Zhu, Z.-G. & Su, G. Symmetry dictionary on charge and spin nonlinear responses for all magnetic point groups with nontrivial topological nature. Natl Sci. Rev. 10, nwad104 (2023).

  • Brinkman, W. F. & Elliott, R. J. Theory of spin-space groups. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 294, 343–358 (1966).

    ADS 
    CAS 

    Google Scholar
     

  • Litvin, D. B. & Opechowski, W. Spin groups. Physica 76, 538–554 (1974).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Liu, P., Li, J., Han, J., Wan, X. & Liu, Q. Spin-group symmetry in magnetic materials with negligible spin-orbit coupling. Phys. Rev. X 12, 021016 (2022).

    CAS 

    Google Scholar
     

  • Chen, X. et al. Enumeration and representation theory of spin space groups. Phys. Rev. X 14, 031038 (2024).

    CAS 

    Google Scholar
     

  • Xiao, Z., Zhao, J., Li, Y., Shindou, R. & Song, Z.-D. Spin space groups: full classification and applications. Phys. Rev. X 14, 031037 (2024).

    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Enumeration of spin-space groups: toward a complete description of symmetries of magnetic orders. Phys. Rev. X 14, 031039 (2024).

    CAS 

    Google Scholar
     

  • Yang, J., Liu, Z.-X. & Fang, C. Symmetry invariants and classes of quasiparticles in magnetically ordered systems having weak spin-orbit coupling. Nat. Commun. 15, 10203 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349–354 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallego, S. V. et al. MAGNDATA: towards a database of magnetic structures. I. The commensurate case. J. Appl. Crystallogr. 49, 1750–1776 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gallego, S. V. et al. MAGNDATA: towards a database of magnetic structures. II. The incommensurate case. J. Appl. Crystallogr. 49, 1941–1956 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Q., Dai, X. & Blügel, S. Different facets of unconventional magnetism. Nat. Phys. 21, 329–331 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Gosálbez-Martínez, D., Souza, I. & Vanderbilt, D. Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe. Phys. Rev. B 92, 085138 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ba, J.-Y., Wang, Y.-M., Duan, H.-J., Deng, M.-X. & Wang, R.-Q. Nonlinear planar Hall effect induced by interband transitions: Application to surface states of topological insulators. Phys. Rev. B 108, L241104 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, Z. Z., Wang, C. M., Sun, H.-P., Lu, H.-Z. & Xie, X. C. Quantum theory of the nonlinear Hall effect. Nat. Commun. 12, 5038 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, K. et al. Canted antiferromagnetic order in the monoaxial chiral magnets V1/3TaS2 and V1/3NbS2. Phys. Rev. Mater. 4, 054416 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).


    Google Scholar
     

  • Corliss, L. M., Elliott, N., Hastings, J. M. & Sass, R. L. Magnetic structure of chromium selenide. Phys. Rev. 122, 1402–1406 (1961).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tajima, Y. et al. Non-coplanar spin structure in a metallic thin film of triangular lattice antiferromagnet CrSe. APL Mater. 12, 041112 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arevalo-Lopez, A. M. & Attfield, J. P. Crystal and magnetic structures of the brownmillerite Ca2Cr2O5. Dalton Trans. 44, 10661–10664 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boehm, M. et al. Complex magnetic ground state of CuB2O4. Phys. Rev. B 68, 024405 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Eriksson, T., Bergqvist, L., Andersson, Y., Nordblad, P. & Eriksson, O. Magnetic properties of selected Mn-based transition metal compounds with β-Mn structure: experiments and theory. Phys. Rev. B 72, 144427 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Ahn, J., Guo, G.-Y. & Nagaosa, N. Low-frequency divergence and quantum geometry of the bulk photovoltaic effect in topological semimetals. Phys. Rev. X 10, 041041 (2020).

    CAS 

    Google Scholar
     

  • Xiao, C. et al. Intrinsic nonlinear electric spin generation in centrosymmetric magnets. Phys. Rev. Lett. 129, 086602 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, C. et al. Time-reversal-even nonlinear current induced spin polarization. Phys. Rev. Lett. 130, 166302 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, S. et al. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol. 16, 869–873 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. Berry connection polarizability tensor and third-order Hall effect. Phys. Rev. B 105, 045118 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, C.-P., Gao, X.-J., Xie, Y.-M., Po, H. C. & Law, K. T. Higher-order nonlinear anomalous Hall effects induced by Berry curvature multipoles. Phys. Rev. B 107, 115142 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mandal, D., Sarkar, S., Das, K. & Agarwal, A. Quantum geometry induced third-order nonlinear transport responses. Phys. Rev. B 110, 195131 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fang, Y., Cano, J. & Ghorashi, S. A. A. Quantum geometry induced nonlinear transport in altermagnets. Phys. Rev. Lett. 133, 106701 (2024).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X., Tsirkin, S. S. & Souza, I. Covariant derivatives of Berry-type quantities: application to nonlinear transport. Preprint at https://arxiv.org/abs/2303.10129 (2023).

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tsirkin, S. S. High performance Wannier interpolation of Berry curvature and related quantities with WannierBerri code. npj Comput. Mater. 7, 33 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar