• Santos, R. G., Machovsky-Capuska, G. E. & Andrades, R. Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science 1979(373), 55–60 (2021).


    Google Scholar
     

  • Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnurr, R. E. J. et al. Reducing marine pollution from single-use plastics (SUPs): A review. Mar. Pollut. Bull. 137, 157–171 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitrano, D. M. & Wohlleben, W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat. Commun. https://doi.org/10.1038/s41467-020-19069-1 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Havas, V., Falk-Andersson, J. & Deshpande, P. Small circles: The role of physical distance in plastics recycling. Sci. Total Environ. 831, 154913 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • OECD. Towards Eliminating Plastic Pollution by 2040 A Policy Scenario Analysis. https://www.oecd.org/environment/plastics/Interim-Findings-Towards-Eliminating-Plastic-Pollution-by-2040-Policy-Scenario-Analysis.pdf (2023).

  • UNEP. Intergovernmental Negotiating Committee on Plastic Pollution. http://www.unep.org/inc-plastic-pollution (2022).

  • Kvale, K., Andrews, Z. A. & Egger, M. Mind the fragmentation gap. Nat. Commun. https://doi.org/10.1038/s41467-024-53962-3 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaandorp, M. L. A., Lobelle, D., Kehl, C., Dijkstra, H. A. & van Sebille, E. Global mass of buoyant marine plastics dominated by large long-lived debris. Nat. Geosci. 16, 689–694 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Richon, C., Kvale, K., Lebreton, L. & Egger, M. Legacy oceanic plastic pollution must be addressed to mitigate possible long-term ecological impacts. Micropl. Nanopl. 3, 25 (2023).

    Article 

    Google Scholar
     

  • Geyer, R., Jambeck, J. & Law, K. Production, use, and fate of all plastics ever made. Sci. Adv. 3, 25–29 (2017).

    Article 

    Google Scholar
     

  • Plastics Europe. Plastics-the Facts 2022. (2022).

  • Onink, V., Jongedijk, C. E., Hoffman, M. J., van Sebille, E. & Laufkötter, C. Global simulations of marine plastic transport show plastic trapping in coastal zones. Environ. Res. Lett. 16, 064053 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lebreton, L., Egger, M. & Slat, B. A global mass budget for positively buoyant macroplastic debris in the ocean. Sci. Rep. 9, 1700782 (2019).

    Article 

    Google Scholar
     

  • Van Sebille, E. et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 1–54 (2020).

  • Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. 111, 10239–10244 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eriksen, M. et al. Plastic pollution in the world’s cceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Sebille, E. et al. A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 1–15 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lebreton, L. et al. Industrialised fishing nations largely contribute to floating plastic pollution in the North Pacific subtropical gyre. Sci. Rep. https://doi.org/10.1038/s41598-022-16529-0 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales-Caselles, C. et al. An inshore–offshore sorting system revealed from global classification of ocean litter. Nat. Sustain. 4, 484–493 (2021).

    Article 

    Google Scholar
     

  • Delre, A. et al. Plastic photodegradation under simulated marine conditions. Mar. Pollut. Bull. 187, 114544 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilman, E. et al. Highest risk abandoned, lost and discarded fishing gear. Sci. Rep. 11, 1–11 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Høiberg, M. A., Woods, J. S. & Verones, F. Global distribution of potential impact hotspots for marine plastic debris entanglement. Ecol. Indic. 135, 108509 (2022).

    Article 

    Google Scholar
     

  • Clark, B. L. et al. Global assessment of marine plastic exposure risk for oceanic birds. Nat. Commun. 14, 3665 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richon, C., Gorgues, T., Paul-Pont, I. & Maes, C. Zooplankton exposure to microplastics at global scale: Influence of vertical distribution and seasonality. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.947309 (2022).

    Article 

    Google Scholar
     

  • Everaert, G. et al. Risks of floating microplastic in the global ocean. Environ. Pollut. 267, 115499 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richon, C. et al. Model exploration of microplastic effects on zooplankton grazing reveal potential impacts on the global carbon cycle. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ad5195 (2024).

    Article 

    Google Scholar
     

  • Chen, Q. et al. Pollutants in plastics within the North Pacific Subtropical Gyre. Environ. Sci. Technol. 52, 446–456 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Gómez, J. C., Garrigós, M. & Garrigós, J. Plastic as a vector of dispersion for marine species with invasive potential. A review. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2021.629756 (2021).

    Article 

    Google Scholar
     

  • Haram, L. E. et al. Extent and reproduction of coastal species on plastic debris in the North Pacific Subtropical Gyre. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-023-01997-y (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlton, J. T. et al. Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography. Science (1979) 357, 1402–1406 (2017).

    CAS 

    Google Scholar
     

  • Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R. & Lewis, C. Oceanic hitchhikers—assessing pathogen risks from marine microplastic. Trends Microbiol. 29, 107–116 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaandorp, M. L. A., Dijkstra, H. A. & van Sebille, E. Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation. Environ. Res. Lett. 16, (2021).

  • Mitrano, D. M., Wick, P. & Nowack, B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 16, 491–500 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, S., Mincer, T. J., Lebreton, L. & Egger, M. Pelagic microplastics in the North Pacific subtropical gyre: a prevalent anthropogenic component of the particulate organic carbon pool. PNAS Nexus https://doi.org/10.1093/pnasnexus/pgad070 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egger, M., Sulu-Gambari, F. & Lebreton, L. First evidence of plastic fallout from the North Pacific Garbage Patch. Sci. Rep. 10, 7495 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mountford, A. S. & Maqueda, M. Eulerian modeling of the three—dimensional distribution of seven popular microplastic types in the global ccean. J. Geophys. Res. Oceans 124, 8558–8573 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Klink, D., Peytavin, A. & Lebreton, L. Size dependent transport of floating plastics modeled in the global ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.903134 (2022).

    Article 

    Google Scholar
     

  • Rillig, M. C., Kim, S. W., Kim, T. Y. & Waldman, W. R. The global plastic toxicity debt. Environ. Sci. Technol. 55, 2717–2719 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, S. & Schlummer, M. Legacy additives in a circular economy of plastics: Current dilemma, policy analysis, and emerging countermeasures. Resour. Conserv. Recycl. 158, (2020).

  • Andrade, H. et al. Oceanic long-range transport of organic additives present in plastic products: An overview. Environ. Sci. Eur. https://doi.org/10.1186/s12302-021-00522-x (2021).

    Article 

    Google Scholar
     

  • Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science (1979) 369, 1515–1518 (2020).

    CAS 

    Google Scholar
     

  • Bergmann, M. et al. Moving from symptom management to upstream plastics prevention: The fallacy of plastic cleanup technology. One Earth 6, 1439–1442 (2023).

    Article 

    Google Scholar
     

  • Falk-Andersson, J. et al. cleaning up without messing up: Maximizing the benefits of plastic clean-up technologies through new regulatory approaches. Environ. Sci. Technol. 57, 13304–13312 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spencer, M. et al. Estimating the impact of new high seas activities on the environment: The effects of ocean-surface macroplastic removal on sea surface ecosystems. PeerJ 11, e15021 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leone, G. et al. Integrating Bayesian Belief Networks in a toolbox for decision support on plastic clean-up technologies in rivers and estuaries. Environ. Pollut. 296, 118721 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falk-Andersson, J., Larsen Haarr, M. & Havas, V. Basic principles for development and implementation of plastic clean-up technologies: What can we learn from fisheries management?. Sci. Total Environ. 745, 141117 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • UNEP. Revised Draft Text of the International Legally Binding Instrument on Plastic Pollution, Including in the Marine Environment. (2023).

  • INC. Intergovernmental Negotiating Committee to Develop an International Legally Binding Instrument on Plastic Pollution, Including in the Marine Environment – Chair’s Text. (2024).

  • Efroymson, R. A., Nicolette, J. P. & Suter, G. W. A framework for net environmental benefit analysis for remediation or restoration of contaminated sites. Environ. Manag. 34, 315–331 (2004).

    Article 

    Google Scholar
     

  • Nicolette, J. P. et al. A framework for a net environmental benefit analysis based comparative assessment of decommissioning options for anthropogenic subsea structures: A North Sea case study. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.1020334 (2023).

    Article 

    Google Scholar
     

  • Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gigault, J., Pedrono, B., Maxit, B. & Ter Halle, A. Marine plastic litter: The unanalyzed nano-fraction. Environ. Sci. Nano 3, 346–350 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Huang, D. et al. Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. J. Hazard Mater. 407, 124399 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Materić, D., Holzinger, R. & Niemann, H. Nanoplastics and ultrafine microplastic in the Dutch Wadden Sea—The hidden plastics debris?. Sci. Total Environ. 846, 157371 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Moon, S. et al. Direct observation and identification of nanoplastics in ocean water. Sci. Adv. 10, 1675 (2024).

    Article 

    Google Scholar
     

  • Ter Halle, A. et al. Nanoplastic in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mehinto, A. C. et al. Risk-based management framework for microplastics in aquatic ecosystems. Micropl. Nanopl. https://doi.org/10.1186/s43591-022-00033-3 (2022).

    Article 

    Google Scholar
     

  • Egger, M. et al. Densities of neuston often not elevated within plastic hotspots territory inside the North Pacific Garbage Patch. Environ. Res. Ecol. 3, 035002 (2024).

    Article 

    Google Scholar
     

  • Lebreton, L. et al. Seven years into the North Pacific garbage patch: legacy plastic fragments rising disproportionally faster than larger floating objects. Environ. Res. Lett. 19, 124054 (2024).

    Article 

    Google Scholar
     

  • Liro, M., Zielonka, A. & Mikuś, P. First attempt to measure macroplastic fragmentation in rivers. Environ. Int. 191, 108935 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liro, M., Zielonka, A. & van Emmerik, T. H. M. Macroplastic fragmentation in rivers. Environ. Int. 180, 108186 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fava, F. et al. Microplastics generation: Onset of fragmentation of polyethylene films in marine environment mesocosms. Front. Mar. Sci. 4, 1–15 (2017).

    ADS 

    Google Scholar
     

  • Egger, M. et al. A spatially variable scarcity of floating microplastics in the eastern North Pacific Ocean. Environ. Res. Lett. 15, 114056 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ocean Sciences Inc., C. The Ocean Cleanup Final S03 Environmental Impact Assessment. https://assets.theoceancleanup.com/app/uploads/2023/08/System-03-Environmental-Impact-Assessment-The-Ocean-Cleanup.pdf (2023).

  • The Ocean Cleanup. System 03: A beginner’s guide. https://theoceancleanup.com/updates/system-03-a-beginners-guide/ (2023).

  • The Ocean Cleanup. System 002 and marine life: Prevention and mitigation. https://theoceancleanup.com/updates/system-002-and-marine-life-prevention-and-mitigation/ (2023).

  • Schuyler, Q. A. et al. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles. Glob. Chang. Biol. 22, 567–576 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Friedlander, A. et al. The State of Coral Reef Ecosystems of the Northwestern Hawaiian Islands. NO (2005).

  • Brignac, K. C. et al. Marine debris polymers on main Hawaiian island beaches, sea surface, and seafloor. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b03561 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Royer, S. J., Ferrón, S., Wilson, S. T. & Karl, D. M. Production of methane and ethylene from plastic in the environment. PLoS ONE 13, 1–13 (2018).

    Article 

    Google Scholar
     

  • Frenger, I. et al. Misconceptions of the marine biological carbon pump in a changing climate: Thinking outside the “export” box. Glob. Chang. Biol. https://doi.org/10.1111/gcb.17124 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kvale, K. Implications of plastic pollution on global marine carbon cycling and climate. Emerg. Top Life Sci. 6, 359–369 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azimrayat Andrews, Z., Kvale, K. & Hunt, C. Slow biological microplastics removal under ocean pollution phase-out trajectories. Environ. Res. Lett. 19, 064029 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Rohr, T., Richardson, A. J., Lenton, A., Chamberlain, M. A. & Shadwick, E. H. Zooplankton grazing is the largest source of uncertainty for marine carbon cycling in CMIP6 models. Commun. Earth Environ. https://doi.org/10.1038/s43247-023-00871-w (2023).

    Article 

    Google Scholar
     

  • Parrella, F., Brizzolara, S., Holzner, M. & Mitrano, D. M. Impact of heteroaggregation between microplastics and algae on particle vertical transport. Nat. Water https://doi.org/10.1038/s44221-024-00248-z (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kvale, K., Hunt, C., James, A. & Koeve, W. Regionally disparate ecological responses to microplastic slowing of faecal pellets yields coherent carbon cycle response. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1111838 (2023).

    Article 

    Google Scholar
     

  • Galgani, L. et al. Microplastics increase the marine production of particulate forms of organic matter. Environ. Res. Lett. 14, 124085 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Galgani, L., Engel, A., Rossi, C., Donati, A. & Loiselle, S. A. Polystyrene microplastics increase microbial release of marine chromophoric dissolved organic matter in microcosm experiments. Sci. Rep. https://doi.org/10.1038/s41598-018-32805-4 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meijer, L. J. J., van Emmerik, T., van der Ent, R., Schmidt, C. & Lebreton, L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. https://doi.org/10.1126/sciadv.aaz5803 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kooi, M. et al. The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci. Rep. 6, 1–10 (2016).

    Article 

    Google Scholar
     

  • Reisser, J. et al. The vertical distribution of buoyant plastics at sea: An observational study in the North Atlantic Gyre. Biogeosciences 12, 1249–1256 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ocean Sciences Inc., C. The Ocean Cleanup Final Environmental Impact Assessment. https://assets.theoceancleanup.com/app/uploads/2021/07/TOC_FL_21_3648_EIA_FINREV01_12July2021.pdf (2021).

  • Ocean Sciences Inc., C. The Ocean Cleanup Environmental Impact Assessment. https://assets.theoceancleanup.com/app/uploads/2019/04/TOC_EIA_2018.pdf (2018).

  • Murphy, E. L., Fredette-Roman, C., Rochman, C. M., Gerber, L. R. & Polidoro, B. A multi-taxonomic, trait-based framework for assessing macroplastic vulnerability. Sci. Total Environ. 892, 164563 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Beaumont, N. J. et al. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142, 189–195 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Egger, M. et al. Relative abundance of floating plastic debris and neuston in the Eastern North Pacific Ocean. Front. Mar. Sci. 8, 1–13 (2021).

    Article 

    Google Scholar
     

  • Helm, R. R. The mysterious ecosystem at the ocean’s surface. PLoS Biol. https://doi.org/10.1371/journal.pbio.3001046 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, E. L., Gerber, L. R., Rochman, C. M. & Polidoro, B. A macroplastic vulnerability index for marine mammals, seabirds, and sea turtles in Hawai‘i. Sci. Total Environ. 908, 168247 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coffin, S., Weisberg, S. B., Rochman, C., Kooi, M. & Koelmans, A. A. Risk characterization of microplastics in San Francisco Bay, California. Microplast. Nanoplast. https://doi.org/10.1186/s43591-022-00037-z (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kooi, M. & Koelmans, A. A. Simplifying microplastic via continuous probability distributions for size, shape, and density. Environ. Sci. Technol. Lett. 6, 551–557 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Koelmans, A. A., Redondo-Hasselerharm, P. E., Mohamed Nor, N. H. & Kooi, M. Solving the nonalignment of methods and approaches used in microplastic research to consistently characterize risk. Environ. Sci. Technol. 54, 12307–12315 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kooi, M. et al. Characterizing the multidimensionality of microplastics across environmental compartments. Water Res. 202, 117429 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerritse, J., Leslie, H. A., De Tender, C. A., Devriese, L. I. & Vethaak, A. D. Fragmentation of plastic objects in a laboratory seawater microcosm. Sci. Rep. https://doi.org/10.1038/s41598-020-67927-1 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Everaert, G. et al. Risk assessment of microplastics in the ocean: Modelling approach and first conclusions. Environ. Pollut. 242, 1930–1938 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • EU. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1907-20140410&from=EN (2006).

  • Gewert, B., Plassmann, M. M. & Macleod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 17, 1513–1521 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wayman, C. & Niemann, H. The fate of plastic in the ocean environment—A minireview. Environ. Sci. Process. Impacts https://doi.org/10.1039/d0em00446d (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Romera-Castillo, C., Birnstiel, S., Álvarez-Salgado, X. A. & Sebastián, M. Aged plastic leaching of dissolved organic matter is two orders of magnitude higher than virgin plastic leading to a strong uplift in marine microbial activity. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.861557 (2022).

    Article 

    Google Scholar
     

  • Rynek, R. et al. Hotspots of floating plastic particles across the North Pacific Ocean. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.3c05039 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smeaton, C. Augmentation of global marine sedimentary carbon storage in the age of plastic. Limnol. Oceanogr. Lett. 6, 113–118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Turner, J. T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Pershing, A. J., Christensen, L. B., Record, N. R., Sherwood, G. D. & Stetson, P. B. The impact of whaling on the ocean carbon cycle: Why bigger was better. PLoS ONE 5, e12444 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cole, M. et al. Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environ. Sci. Technol. 50, 3239–3246 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Botterell, Z. L. R. et al. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut. 245, 98–110 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, S.-P., Cole, M. & Chan, B. K. K. Effects of microplastic on zooplankton survival and sublethal responses. In Oceanography and Marine Biology: An Annual Review (eds. Hawkins, S. J. et al.) vol. 58, 351–393 (CRC Press, 2020).

  • Long, M. et al. Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Mar. Chem. 175, 39–46 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Galgani, L. et al. Hitchhiking into the deep: how microplastic particles are exported through the biological carbon pump in the North Atlantic Ocean. Environ. Sci. Technol. 56, 15638–15649 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wieczorek, A. M., Croot, P. L., Lombard, F., Sheahan, J. N. & Doyle, T. K. Microplastic ingestion by gelatinous zooplankton may lower efficiency of the biological pump. Environ. Sci. Technol. 53, 5387–5395 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziervogel, K. et al. Microbial interactions with microplastics: Insights into the plastic carbon cycle in the ocean. Mar. Chem. 262, 104395 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model. Dev. 8, 2465–2513 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar