Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).
Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photonics 10, 295–302 (2016).
Makarov, S. et al. Halide-perovskite resonant nanophotonics. Adv. Opt. Mater. 7, 1800784 (2019).
Su, R. et al. Perovskite semiconductors for room-temperature exciton–polaritonics. Nat. Mater. 20, 1315–1324 (2021).
Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).
Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).
Bao, W. et al. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proc. Natl Acad. Sci. USA 116, 20274–20279 (2019).
Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).
Tao, R. et al. Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nat. Mater. 21, 761–766 (2022).
Feng, J. et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci. Adv. 7, eabj6627 (2021).
Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).
Wu, J. et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett. 21, 3120–3126 (2021).
Wu, J. et al. Perovskite polariton parametric oscillator. Adv. Photonics 3, 055003 (2021).
Peng, K. et al. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun. 13, 7388 (2022).
Zhou, Y. et al. Nonlinear optical properties of halide perovskites and their applications. Appl. Phys. Rev. 7, 041313 (2020).
Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).
Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photonics 8, 685–694 (2014).
Paraïso, T., Wouters, M., Léger, Y., Morier-Genoud, F. & Deveaud-Plédran, B. Multistability of a coherent spin ensemble in a semiconductor microcavity. Nat. Mater. 9, 655–660 (2010).
Moroney, N. et al. A Kerr polarization controller. Nat. Commun. 13, 398 (2022).
King, J. et al. Electrically tunable VO2–metal metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat. Photonics 18, 74–80 (2024).
Cotrufo, M., Cordaro, A., Sounas, D. L., Polman, A. & Alù, A. Passive bias-free non-reciprocal metasurfaces based on thermally nonlinear quasi-bound states in the continuum. Nat. Photonics 18, 81–90 (2024).
Estrecho, E. et al. Direct measurement of polariton–polariton interaction strength in the Thomas–Fermi regime of exciton–polariton condensation. Phys. Rev. B 100, 035306 (2019).
Schmidt, D. et al. Tracking dark excitons with exciton polaritons in semiconductor microcavities. Phys. Rev. Lett. 122, 047403 (2019).
Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238–6245 (2016).
Trichet, A. A. P., Dolan, P. R., Coles, D. M., Hughes, G. M. & Smith, J. M. Topographic control of open-access microcavities at the nanometer scale. Opt. Express 23, 17205–17216 (2015).
Geng, Z. et al. Fano lineshapes and Rabi splittings: can they be artificially generated or obscured by the numerical aperture? ACS Photonics 8, 1271–1276 (2021).
Biegańska, D. et al. Collective excitations of exciton-polariton condensates in a synthetic gauge field. Phys. Rev. Lett. 127, 185301 (2021).
Terças, H., Flayac, H., Solnyshkov, D. D. & Malpuech, G. Non-Abelian gauge fields in photonic cavities and photonic superfluids. Phys. Rev. Lett. 112, 066402 (2014).
Rechcińska, K. et al. Engineering spin–orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).
Li, Y. et al. Manipulating polariton condensates by Rashba–Dresselhaus coupling at room temperature. Nat. Commun. 13, 3785 (2022).
Liang, J. et al. Polariton spin Hall effect in a Rashba–Dresselhaus regime at room temperature. Nat. Photonics 18, 357–362 (2024).
Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).
Liao, Q. et al. Experimental measurement of the divergent quantum metric of an exceptional point. Phys. Rev. Lett. 127, 107402 (2021).
Duggan, R., del Pino, J., Verhagen, E. & Alù, A. Optomechanically induced birefringence and optomechanically induced Faraday effect. Phys. Rev. Lett. 123, 023602 (2019).
Hoi, I.-C. et al. Giant cross–Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111, 053601 (2013).
Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photonics 7, 138–141 (2013).
Copie, F. et al. Interplay of polarization and time-reversal symmetry breaking in synchronously pumped ring resonators. Phys. Rev. Lett. 122, 013905 (2019).
Kiesewetter, S., Polkinghorne, R., Opanchuk, B. & Drummond, P. D. xSPDE: extensible software for stochastic equations. SoftwareX 5, 12–15 (2016).
Geng, Z. et al. Universal scaling in the dynamic hysteresis, and non-Markovian dynamics, of a tunable optical cavity. Phys. Rev. Lett. 124, 153603 (2020).
Peters, K. J. H., Geng, Z., Malmir, K., Smith, J. M. & Rodriguez, S. R. K. Extremely broadband stochastic resonance of light and enhanced energy harvesting enabled by memory effects in the nonlinear response. Phys. Rev. Lett. 126, 213901 (2021).
Keijsers, G. et al. Photon superfluidity through dissipation. Phys. Rev. Res. 6, 023266 (2024).
Amelio, I., Minguzzi, A., Richard, M. & Carusotto, I. Galilean boosts and superfluidity of resonantly driven polariton fluids in the presence of an incoherent reservoir. Phys. Rev. Res. 2, 023158 (2020).
Li, X. et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016).
Shinde, A., Gahlaut, R. & Mahamuni, S. Low-temperature photoluminescence studies of CsPbBr3 quantum dots. J. Phys. Chem. C 121, 14872–14878 (2017).
Ding, T. X., Hou, L., van der Meer, H., Alivisatos, A. P. & Orrit, M. Hundreds-fold sensitivity enhancement of photothermal microscopy in near-critical xenon. J. Phys. Chem. Lett. 7, 2524–2529 (2016).
Rodová, M., Brožek, J., Knížek, K. & Nitsch, K. Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71, 667–673 (2003).
Isarov, M. et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Lett. 17, 5020–5026 (2017).
Li, X. et al. Evidence for ferroelectricity of all-inorganic perovskite CsPbBr3 quantum dots. J. Am. Chem. Soc. 142, 3316–3320 (2020).
Xue, J. et al. Photon-induced reversible phase transition in CsPbBr3 perovskite. Adv. Funct. Mater. 29, 1807922 (2019).
Cheng, P. et al. All-optical excitatory and inhibitory synapses based on reversible photo-induced phase transition in single-crystal CsPbBr3 perovskite. Adv. Opt. Mater. 12, 2303306 (2024).
Boziki, A., Dar, M. I., Jacopin, G., Grätzel, M. & Rothlisberger, U. Molecular origin of the asymmetric photoluminescence spectra of CsPbBr3 at low temperature. J. Phys. Chem. Lett. 12, 2699–2704 (2021).
Pan, F. et al. Free and self-trapped exciton emission in perovskite CsPbBr3 microcrystals. RSC Adv. 12, 1035–1042 (2022).
Guo, Y. et al. Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites. Nat. Commun. 10, 1175 (2019).
Ghosh, D., Welch, E., Neukirch, A. J., Zakhidov, A. & Tretiak, S. Polarons in halide perovskites: a perspective. J. Phys. Chem. Lett. 11, 3271–3286 (2020).
Masharin, M. A. et al. Polaron-enhanced polariton nonlinearity in lead halide perovskites. Nano Lett. 22, 9092–9099 (2022).
Pirc, R. & Blinc, R. Spherical random-bond–random-field model of relaxor ferroelectrics. Phys. Rev. B 60, 13470–13478 (1999).
Cotleţ, O., Zeytinoglu, S., Sigrist, M., Demler, E. & Imamoglu, A. Superconductivity and other collective phenomena in a hybrid Bose–Fermi mixture formed by a polariton condensate and an electron system in two dimensions. Phys. Rev. B 93, 054510 (2016).
Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).
Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41–48 (2022).
Whittaker, C. E. et al. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photonics 15, 193–196 (2021).
Polimeno, L. et al. Tuning of the Berry curvature in 2D perovskite polaritons. Nat. Nanotechnol. 16, 1349–1354 (2021).
Król, M. et al. Realizing optical persistent spin helix and Stern–Gerlach deflection in an anisotropic liquid crystal microcavity. Phys. Rev. Lett. 127, 190401 (2021).
Muszyński, M. et al. Realizing persistent-spin-helix lasing in the regime of Rashba–Dresselhaus spin–orbit coupling in a dye-filled liquid-crystal optical microcavity. Phys. Rev. Appl. 17, 014041 (2022).
Ren, J. et al. Realization of exciton-mediated optical spin–orbit interaction in organic microcrystalline resonators. Laser Photonics Rev. 16, 2100252 (2022).
Łempicka-Mirek, K. et al. Electrically tunable Berry curvature and strong light–matter coupling in liquid crystal microcavities with 2D perovskite. Sci. Adv. 8, eabq7533 (2022).
Su, R. et al. Direct measurement of a non-Hermitian topological invariant in a hybrid light–matter system. Sci. Adv. 7, eabj8905 (2021).
Feist, J. & Garcia-Vidal, F. J. Extraordinary exciton conductance induced by strong coupling. Phys. Rev. Lett. 114, 196402 (2015).
Morimoto, T. & Nagaosa, N. Photocurrent of exciton polaritons. Phys. Rev. B 102, 235139 (2020).
Hofstrand, A., Cotrufo, M. & Alù, A. Nonreciprocal pulse shaping and chaotic modulation with asymmetric noninstantaneous nonlinear resonators. Phys. Rev. A 104, 053529 (2021).
Keijsers, G. et al. Dataset for “continuous-wave nonlinear polarization control and signatures of criticality in a perovskite cavity”. Zenodo https://doi.org/10.5281/zenodo.15046017 (2025).