• Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photonics 10, 295–302 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Makarov, S. et al. Halide-perovskite resonant nanophotonics. Adv. Opt. Mater. 7, 1800784 (2019).

    Article 

    Google Scholar
     

  • Su, R. et al. Perovskite semiconductors for room-temperature exciton–polaritonics. Nat. Mater. 20, 1315–1324 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bao, W. et al. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proc. Natl Acad. Sci. USA 116, 20274–20279 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    Article 

    Google Scholar
     

  • Tao, R. et al. Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nat. Mater. 21, 761–766 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Feng, J. et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci. Adv. 7, eabj6627 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wu, J. et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett. 21, 3120–3126 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wu, J. et al. Perovskite polariton parametric oscillator. Adv. Photonics 3, 055003 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Peng, K. et al. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun. 13, 7388 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, Y. et al. Nonlinear optical properties of halide perovskites and their applications. Appl. Phys. Rev. 7, 041313 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photonics 8, 685–694 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Paraïso, T., Wouters, M., Léger, Y., Morier-Genoud, F. & Deveaud-Plédran, B. Multistability of a coherent spin ensemble in a semiconductor microcavity. Nat. Mater. 9, 655–660 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Moroney, N. et al. A Kerr polarization controller. Nat. Commun. 13, 398 (2022).

    Article 
    ADS 

    Google Scholar
     

  • King, J. et al. Electrically tunable VO2–metal metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat. Photonics 18, 74–80 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Cotrufo, M., Cordaro, A., Sounas, D. L., Polman, A. & Alù, A. Passive bias-free non-reciprocal metasurfaces based on thermally nonlinear quasi-bound states in the continuum. Nat. Photonics 18, 81–90 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Estrecho, E. et al. Direct measurement of polariton–polariton interaction strength in the Thomas–Fermi regime of exciton–polariton condensation. Phys. Rev. B 100, 035306 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, D. et al. Tracking dark excitons with exciton polaritons in semiconductor microcavities. Phys. Rev. Lett. 122, 047403 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238–6245 (2016).

    Article 

    Google Scholar
     

  • Trichet, A. A. P., Dolan, P. R., Coles, D. M., Hughes, G. M. & Smith, J. M. Topographic control of open-access microcavities at the nanometer scale. Opt. Express 23, 17205–17216 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Geng, Z. et al. Fano lineshapes and Rabi splittings: can they be artificially generated or obscured by the numerical aperture? ACS Photonics 8, 1271–1276 (2021).

    Article 

    Google Scholar
     

  • Biegańska, D. et al. Collective excitations of exciton-polariton condensates in a synthetic gauge field. Phys. Rev. Lett. 127, 185301 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Terças, H., Flayac, H., Solnyshkov, D. D. & Malpuech, G. Non-Abelian gauge fields in photonic cavities and photonic superfluids. Phys. Rev. Lett. 112, 066402 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Rechcińska, K. et al. Engineering spin–orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Manipulating polariton condensates by Rashba–Dresselhaus coupling at room temperature. Nat. Commun. 13, 3785 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liang, J. et al. Polariton spin Hall effect in a Rashba–Dresselhaus regime at room temperature. Nat. Photonics 18, 357–362 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Liao, Q. et al. Experimental measurement of the divergent quantum metric of an exceptional point. Phys. Rev. Lett. 127, 107402 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Duggan, R., del Pino, J., Verhagen, E. & Alù, A. Optomechanically induced birefringence and optomechanically induced Faraday effect. Phys. Rev. Lett. 123, 023602 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hoi, I.-C. et al. Giant cross–Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111, 053601 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photonics 7, 138–141 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Copie, F. et al. Interplay of polarization and time-reversal symmetry breaking in synchronously pumped ring resonators. Phys. Rev. Lett. 122, 013905 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kiesewetter, S., Polkinghorne, R., Opanchuk, B. & Drummond, P. D. xSPDE: extensible software for stochastic equations. SoftwareX 5, 12–15 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Geng, Z. et al. Universal scaling in the dynamic hysteresis, and non-Markovian dynamics, of a tunable optical cavity. Phys. Rev. Lett. 124, 153603 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Peters, K. J. H., Geng, Z., Malmir, K., Smith, J. M. & Rodriguez, S. R. K. Extremely broadband stochastic resonance of light and enhanced energy harvesting enabled by memory effects in the nonlinear response. Phys. Rev. Lett. 126, 213901 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Keijsers, G. et al. Photon superfluidity through dissipation. Phys. Rev. Res. 6, 023266 (2024).

    Article 

    Google Scholar
     

  • Amelio, I., Minguzzi, A., Richard, M. & Carusotto, I. Galilean boosts and superfluidity of resonantly driven polariton fluids in the presence of an incoherent reservoir. Phys. Rev. Res. 2, 023158 (2020).

    Article 

    Google Scholar
     

  • Li, X. et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Shinde, A., Gahlaut, R. & Mahamuni, S. Low-temperature photoluminescence studies of CsPbBr3 quantum dots. J. Phys. Chem. C 121, 14872–14878 (2017).

    Article 

    Google Scholar
     

  • Ding, T. X., Hou, L., van der Meer, H., Alivisatos, A. P. & Orrit, M. Hundreds-fold sensitivity enhancement of photothermal microscopy in near-critical xenon. J. Phys. Chem. Lett. 7, 2524–2529 (2016).

    Article 

    Google Scholar
     

  • Rodová, M., Brožek, J., Knížek, K. & Nitsch, K. Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71, 667–673 (2003).

    Article 

    Google Scholar
     

  • Isarov, M. et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Lett. 17, 5020–5026 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, X. et al. Evidence for ferroelectricity of all-inorganic perovskite CsPbBr3 quantum dots. J. Am. Chem. Soc. 142, 3316–3320 (2020).

    Article 

    Google Scholar
     

  • Xue, J. et al. Photon-induced reversible phase transition in CsPbBr3 perovskite. Adv. Funct. Mater. 29, 1807922 (2019).

    Article 

    Google Scholar
     

  • Cheng, P. et al. All-optical excitatory and inhibitory synapses based on reversible photo-induced phase transition in single-crystal CsPbBr3 perovskite. Adv. Opt. Mater. 12, 2303306 (2024).

    Article 

    Google Scholar
     

  • Boziki, A., Dar, M. I., Jacopin, G., Grätzel, M. & Rothlisberger, U. Molecular origin of the asymmetric photoluminescence spectra of CsPbBr3 at low temperature. J. Phys. Chem. Lett. 12, 2699–2704 (2021).

    Article 

    Google Scholar
     

  • Pan, F. et al. Free and self-trapped exciton emission in perovskite CsPbBr3 microcrystals. RSC Adv. 12, 1035–1042 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Guo, Y. et al. Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites. Nat. Commun. 10, 1175 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ghosh, D., Welch, E., Neukirch, A. J., Zakhidov, A. & Tretiak, S. Polarons in halide perovskites: a perspective. J. Phys. Chem. Lett. 11, 3271–3286 (2020).

    Article 

    Google Scholar
     

  • Masharin, M. A. et al. Polaron-enhanced polariton nonlinearity in lead halide perovskites. Nano Lett. 22, 9092–9099 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pirc, R. & Blinc, R. Spherical random-bond–random-field model of relaxor ferroelectrics. Phys. Rev. B 60, 13470–13478 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Cotleţ, O., Zeytinoglu, S., Sigrist, M., Demler, E. & Imamoglu, A. Superconductivity and other collective phenomena in a hybrid Bose–Fermi mixture formed by a polariton condensate and an electron system in two dimensions. Phys. Rev. B 93, 054510 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).


    Google Scholar
     

  • Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41–48 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Whittaker, C. E. et al. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photonics 15, 193–196 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Polimeno, L. et al. Tuning of the Berry curvature in 2D perovskite polaritons. Nat. Nanotechnol. 16, 1349–1354 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Król, M. et al. Realizing optical persistent spin helix and Stern–Gerlach deflection in an anisotropic liquid crystal microcavity. Phys. Rev. Lett. 127, 190401 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Muszyński, M. et al. Realizing persistent-spin-helix lasing in the regime of Rashba–Dresselhaus spin–orbit coupling in a dye-filled liquid-crystal optical microcavity. Phys. Rev. Appl. 17, 014041 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ren, J. et al. Realization of exciton-mediated optical spin–orbit interaction in organic microcrystalline resonators. Laser Photonics Rev. 16, 2100252 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Łempicka-Mirek, K. et al. Electrically tunable Berry curvature and strong light–matter coupling in liquid crystal microcavities with 2D perovskite. Sci. Adv. 8, eabq7533 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Su, R. et al. Direct measurement of a non-Hermitian topological invariant in a hybrid light–matter system. Sci. Adv. 7, eabj8905 (2021).

    Article 

    Google Scholar
     

  • Feist, J. & Garcia-Vidal, F. J. Extraordinary exciton conductance induced by strong coupling. Phys. Rev. Lett. 114, 196402 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Morimoto, T. & Nagaosa, N. Photocurrent of exciton polaritons. Phys. Rev. B 102, 235139 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hofstrand, A., Cotrufo, M. & Alù, A. Nonreciprocal pulse shaping and chaotic modulation with asymmetric noninstantaneous nonlinear resonators. Phys. Rev. A 104, 053529 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Keijsers, G. et al. Dataset for “continuous-wave nonlinear polarization control and signatures of criticality in a perovskite cavity”. Zenodo https://doi.org/10.5281/zenodo.15046017 (2025).