• Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Article 

    Google Scholar
     

  • Fazekas, P. & Anderson, P. W. On the ground state properties of the anisotropic triangular antiferromagnet. Philos. Mag. 30, 423–440 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Kivelson, S. A., Rokhsar, D. S. & Sethna, J. P. Topology of the resonating valence-bond state: solitons and high-Tc superconductivity. Phys. Rev. B 35, 8865–8868 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Baskaran, G., Zou, Z. & Anderson, P. W. The resonating valence bond state and high-Tc superconductivity – a mean field theory. Solid State Commun. 63, 973–976 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, P. W. Frontiers and borderlines in many particle physics. In Proc. Enrico Fermi International School of Physics (eds R. A. Broglia et al.) 7–17 (North Holland, 1987).

  • Zou, Z. & Anderson, P. W. Neutral fermion, charge-e boson excitations in the resonating-valence-bond state and superconductivity in La2CuO4-based compounds. Phys. Rev. B 37, 627–630 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, P. W. The Theory of Superconductivity in the High-Tc Cuprate Superconductors (Princeton Univ. Press, 1997).

  • Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: the ‘plain vanilla’ version of RVB. J. Phys.: Condens. Matter 16, R755 (2004).


    Google Scholar
     

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Wen, X.-G. Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2007).

  • Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Balents, L., Fisher, M. P. A. & Girvin, S. M. Fractionalization in an easy-axis kagome antiferromagnet. Phys. Rev. B 65, 224412 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Wen, X.-G. Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Knolle, J. & Moessner, R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. 10, 451–472 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rokhsar, D. S. & Kivelson, S. A. Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376–2379 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Klein, D. J. Exact ground states for a class of antiferromagnetic Heisenberg models with short-range interactions. J. Phys. A: Math. Gen. 15, 661 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Batista, C. D. & Trugman, S. A. Exact ground states of a frustrated 2D magnet: deconfined fractional excitations at a first-order quantum phase transition. Phys. Rev. Lett. 93, 217202 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Raman, K. S., Moessner, R. & Sondhi, S. L. SU(2)-invariant spin- \(\frac{1}{2}\) Hamiltonians with resonating and other valence bond phases. Phys. Rev. B 72, 064413 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Normand, B. & Nussinov, Z. Hubbard model on the pyrochlore lattice: a 3D quantum spin liquid. Phys. Rev. Lett. 112, 207202 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Normand, B. & Nussinov, Z. Fermionic spinon and holon statistics in the pyrochlore quantum spin liquid. Phys. Rev. B 93, 115122 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Schuch, N., Poilblanc, D., Cirac, J. I. & Pérez-García, D. Resonating valence bond states in the PEPS formalism. Phys. Rev. B 86, 115108 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Haerter, J. O. & Shastry, B. S. Kinetic antiferromagnetism in the triangular lattice. Phys. Rev. Lett. 95, 087202 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Poilblanc, D. Enhanced pairing in doped quantum magnets with frustrated hole motion. Phys. Rev. Lett. 93, 197204 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article 
    MathSciNet 

    Google Scholar
     

  • Trabesinger, A. Quantum simulation. Nat. Phys. 8, 263 (2012).

    Article 

    Google Scholar
     

  • Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Sposetti, C. N., Bravo, B., Trumper, A. E., Gazza, C. J. & Manuel, L. O. Classical antiferromagnetism in kinetically frustrated electronic models. Phys. Rev. Lett. 112, 187204 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lisandrini, F. T., Bravo, B., Trumper, A. E., Manuel, L. O. & Gazza, C. J. Evolution of Nagaoka phase with kinetic energy frustrating hopping. Phys. Rev. B 95, 195103 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S.-S., Zhu, W. & Batista, C. D. Pairing from strong repulsion in triangular lattice Hubbard model. Phys. Rev. B 97, 140507 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Morera, I., Bohrdt, A., Ho, W. W. & Demler, E. Attraction from kinetic frustration in ladder systems. Phys. Rev. Res. 6, 023196 (2024).

    Article 

    Google Scholar
     

  • Kim, K.-S. Exact hole-induced resonating-valence-bond ground state in certain U = ∞ Hubbard models. Phys. Rev. B 107, L140401 (2023).

    Article 
    ADS 

    Google Scholar
     

  • White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Baskaran, G. & Anderson, P. W. Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. Phys. Rev. B 37, 580–583 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Read, N. & Sachdev, S. Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. Phys. Rev. Lett. 62, 1694–1697 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Fradkin, E. & Kivelson, S. Short range resonating valence bond theories and superconductivity. Mod. Phys. Lett. B 4, 225–232 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Eisenberg, E., Berkovits, R., Huse, D. A. & Altshuler, B. L. Breakdown of the Nagaoka phase in the two-dimensional t – J model. Phys. Rev. B 65, 134437 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Fujimoto, S. Mott transition and heavy-fermion state in the pyrochlore Hubbard model. Phys. Rev. B 64, 085102 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Pan, Y., Ma, R. & Ma, T. Strong ferromagnetic fluctuations in a doped checkerboard lattice. Phys. Rev. B 107, 245126 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ciorciaro, L. et al. Kinetic magnetism in triangular moiré materials. Nature 623, 509–513 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Nazaryan, K. G. & Fu, L. Magnonic superconductivity. Sci. Adv. https://doi.org/10.1126/sciadv.adp5681 (2024).

  • Fukazawa, H. & Maeno, Y. Filling control of the pyrochlore oxide Y2Ir2O7. J. Phys. Soc. Jpn 71, 2578–2579 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, W. K., Wang, M., Seradjeh, B., Yang, F. & Zhang, S. X. Enhanced weak ferromagnetism and conductivity in hole-doped pyrochlore iridate Y2Ir2O7. Phys. Rev. B 90, 054419 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ishikawa, J. J., O’Farrell, E. C. T. & Nakatsuji, S. Continuous transition between antiferromagnetic insulator and paramagnetic metal in the pyrochlore iridate Eu2Ir2O7. Phys. Rev. B 85, 245109 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Cathelin, V. et al. Fragmented monopole crystal, dimer entropy, and coulomb interactions in Dy2Ir2O7. Phys. Rev. Res. 2, 032073 (2020).

    Article 

    Google Scholar
     

  • Uehara, T., Ohtsuki, T., Udagawa, M., Nakatsuji, S. & Machida, Y. Phonon thermal Hall effect in a metallic spin ice. Nat. Commun. 13, 4604 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pinsard-Gaudart, L., Rodr¡guez-Carvajal, J., Gukasov, A. & Monod, P. Magnetic properties of paramelaconite (Cu4O3): a pyrochlore lattice with \(s=\frac{1}{2}\). Phys. Rev. B 69, 104408 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Wills, A. S., Raymond, S. & Henry, J.-Y. Magnetic ordering in a distorted s = 12 pyrochlore antiferromagnet. J. Magn. Magn. Mater. 272-276, 850–851 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Uematsu, D. et al. Structural studies of the pyrochlore-related spin-1/2 system Ag2Cu2O3. J. Magn. Magn. Mater. 310, e387–e388 (2007).

    Article 

    Google Scholar
     

  • Kawabata, S., Yasui, Y., Kobayashi, Y. & Sato, M. Magnetic behavior of spin-1/2 frustrated system Hg2Cu2F6S. J. Phys. Soc. Jpn 76, 084705 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Nishiyama, M. et al. NMR study of pyrochlore lattice antiferromagnet, melanothallite Cu2OCl2. J. Phys.: Conf. Ser. 320, 012030 (2011).


    Google Scholar
     

  • Ansari, Md. Z. & Damle, K. Magnetic effects of nonmagnetic impurities in gapped short-range resonating valence bond spin liquids. Phys. Rev. Lett. 132, 226504 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Read, N. & Chakraborty, B. Statistics of the excitations of the resonating-valence-bond state. Phys. Rev. B 40, 7133–7140 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Senthil, T., Sachdev, S. & Vojta, M. Fractionalized Fermi liquids. Phys. Rev. Lett. 90, 216403 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Hauschild, J., & Pollmann, F. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes https://doi.org/10.21468/SciPostPhysLectNotes.5 (2018).

    Article 

    Google Scholar