Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).
Fazekas, P. & Anderson, P. W. On the ground state properties of the anisotropic triangular antiferromagnet. Philos. Mag. 30, 423–440 (1974).
Kivelson, S. A., Rokhsar, D. S. & Sethna, J. P. Topology of the resonating valence-bond state: solitons and high-Tc superconductivity. Phys. Rev. B 35, 8865–8868 (1987).
Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).
Baskaran, G., Zou, Z. & Anderson, P. W. The resonating valence bond state and high-Tc superconductivity – a mean field theory. Solid State Commun. 63, 973–976 (1987).
Anderson, P. W. Frontiers and borderlines in many particle physics. In Proc. Enrico Fermi International School of Physics (eds R. A. Broglia et al.) 7–17 (North Holland, 1987).
Zou, Z. & Anderson, P. W. Neutral fermion, charge-e boson excitations in the resonating-valence-bond state and superconductivity in La2CuO4-based compounds. Phys. Rev. B 37, 627–630 (1988).
Anderson, P. W. The Theory of Superconductivity in the High-Tc Cuprate Superconductors (Princeton Univ. Press, 1997).
Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: the ‘plain vanilla’ version of RVB. J. Phys.: Condens. Matter 16, R755 (2004).
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Wen, X.-G. Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2007).
Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001).
Balents, L., Fisher, M. P. A. & Girvin, S. M. Fractionalization in an easy-axis kagome antiferromagnet. Phys. Rev. B 65, 224412 (2002).
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Wen, X.-G. Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803 (2003).
Knolle, J. & Moessner, R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. 10, 451–472 (2019).
Rokhsar, D. S. & Kivelson, S. A. Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376–2379 (1988).
Klein, D. J. Exact ground states for a class of antiferromagnetic Heisenberg models with short-range interactions. J. Phys. A: Math. Gen. 15, 661 (1982).
Batista, C. D. & Trugman, S. A. Exact ground states of a frustrated 2D magnet: deconfined fractional excitations at a first-order quantum phase transition. Phys. Rev. Lett. 93, 217202 (2004).
Raman, K. S., Moessner, R. & Sondhi, S. L. SU(2)-invariant spin- \(\frac{1}{2}\) Hamiltonians with resonating and other valence bond phases. Phys. Rev. B 72, 064413 (2005).
Normand, B. & Nussinov, Z. Hubbard model on the pyrochlore lattice: a 3D quantum spin liquid. Phys. Rev. Lett. 112, 207202 (2014).
Normand, B. & Nussinov, Z. Fermionic spinon and holon statistics in the pyrochlore quantum spin liquid. Phys. Rev. B 93, 115122 (2016).
Schuch, N., Poilblanc, D., Cirac, J. I. & Pérez-García, D. Resonating valence bond states in the PEPS formalism. Phys. Rev. B 86, 115108 (2012).
Haerter, J. O. & Shastry, B. S. Kinetic antiferromagnetism in the triangular lattice. Phys. Rev. Lett. 95, 087202 (2005).
Poilblanc, D. Enhanced pairing in doped quantum magnets with frustrated hole motion. Phys. Rev. Lett. 93, 197204 (2004).
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
Trabesinger, A. Quantum simulation. Nat. Phys. 8, 263 (2012).
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).
Sposetti, C. N., Bravo, B., Trumper, A. E., Gazza, C. J. & Manuel, L. O. Classical antiferromagnetism in kinetically frustrated electronic models. Phys. Rev. Lett. 112, 187204 (2014).
Lisandrini, F. T., Bravo, B., Trumper, A. E., Manuel, L. O. & Gazza, C. J. Evolution of Nagaoka phase with kinetic energy frustrating hopping. Phys. Rev. B 95, 195103 (2017).
Zhang, S.-S., Zhu, W. & Batista, C. D. Pairing from strong repulsion in triangular lattice Hubbard model. Phys. Rev. B 97, 140507 (2018).
Morera, I., Bohrdt, A., Ho, W. W. & Demler, E. Attraction from kinetic frustration in ladder systems. Phys. Rev. Res. 6, 023196 (2024).
Kim, K.-S. Exact hole-induced resonating-valence-bond ground state in certain U = ∞ Hubbard models. Phys. Rev. B 107, L140401 (2023).
White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).
Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).
Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).
Baskaran, G. & Anderson, P. W. Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. Phys. Rev. B 37, 580–583 (1988).
Read, N. & Sachdev, S. Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. Phys. Rev. Lett. 62, 1694–1697 (1989).
Fradkin, E. & Kivelson, S. Short range resonating valence bond theories and superconductivity. Mod. Phys. Lett. B 4, 225–232 (1990).
Eisenberg, E., Berkovits, R., Huse, D. A. & Altshuler, B. L. Breakdown of the Nagaoka phase in the two-dimensional t – J model. Phys. Rev. B 65, 134437 (2002).
Fujimoto, S. Mott transition and heavy-fermion state in the pyrochlore Hubbard model. Phys. Rev. B 64, 085102 (2001).
Pan, Y., Ma, R. & Ma, T. Strong ferromagnetic fluctuations in a doped checkerboard lattice. Phys. Rev. B 107, 245126 (2023).
Ciorciaro, L. et al. Kinetic magnetism in triangular moiré materials. Nature 623, 509–513 (2023).
Nazaryan, K. G. & Fu, L. Magnonic superconductivity. Sci. Adv. https://doi.org/10.1126/sciadv.adp5681 (2024).
Fukazawa, H. & Maeno, Y. Filling control of the pyrochlore oxide Y2Ir2O7. J. Phys. Soc. Jpn 71, 2578–2579 (2002).
Zhu, W. K., Wang, M., Seradjeh, B., Yang, F. & Zhang, S. X. Enhanced weak ferromagnetism and conductivity in hole-doped pyrochlore iridate Y2Ir2O7. Phys. Rev. B 90, 054419 (2014).
Ishikawa, J. J., O’Farrell, E. C. T. & Nakatsuji, S. Continuous transition between antiferromagnetic insulator and paramagnetic metal in the pyrochlore iridate Eu2Ir2O7. Phys. Rev. B 85, 245109 (2012).
Cathelin, V. et al. Fragmented monopole crystal, dimer entropy, and coulomb interactions in Dy2Ir2O7. Phys. Rev. Res. 2, 032073 (2020).
Uehara, T., Ohtsuki, T., Udagawa, M., Nakatsuji, S. & Machida, Y. Phonon thermal Hall effect in a metallic spin ice. Nat. Commun. 13, 4604 (2022).
Pinsard-Gaudart, L., Rodr¡guez-Carvajal, J., Gukasov, A. & Monod, P. Magnetic properties of paramelaconite (Cu4O3): a pyrochlore lattice with \(s=\frac{1}{2}\). Phys. Rev. B 69, 104408 (2004).
Wills, A. S., Raymond, S. & Henry, J.-Y. Magnetic ordering in a distorted s = 12 pyrochlore antiferromagnet. J. Magn. Magn. Mater. 272-276, 850–851 (2004).
Uematsu, D. et al. Structural studies of the pyrochlore-related spin-1/2 system Ag2Cu2O3. J. Magn. Magn. Mater. 310, e387–e388 (2007).
Kawabata, S., Yasui, Y., Kobayashi, Y. & Sato, M. Magnetic behavior of spin-1/2 frustrated system Hg2Cu2F6S. J. Phys. Soc. Jpn 76, 084705 (2007).
Nishiyama, M. et al. NMR study of pyrochlore lattice antiferromagnet, melanothallite Cu2OCl2. J. Phys.: Conf. Ser. 320, 012030 (2011).
Ansari, Md. Z. & Damle, K. Magnetic effects of nonmagnetic impurities in gapped short-range resonating valence bond spin liquids. Phys. Rev. Lett. 132, 226504 (2024).
Read, N. & Chakraborty, B. Statistics of the excitations of the resonating-valence-bond state. Phys. Rev. B 40, 7133–7140 (1989).
Senthil, T., Sachdev, S. & Vojta, M. Fractionalized Fermi liquids. Phys. Rev. Lett. 90, 216403 (2003).
Hauschild, J., & Pollmann, F. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes https://doi.org/10.21468/SciPostPhysLectNotes.5 (2018).