Lamberti, C. & Van Bokhoven, J. A. (eds) X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications (Wiley, 2016).
Bergmann, U. et al. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. Nat. Rev. Phys. 3, 264–282 (2021).
Cutsail, G. E. III & DeBeer, S. Challenges and opportunities for applications of advanced X-ray spectroscopy in catalysis research. ACS Catal. 12, 5864–5886 (2022).
Glatzel, P. & Bergmann, U. High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes — electronic and structural information. Coord. Chem. Rev. 249, 65–95 (2005).
Bergmann, U. & Glatzel, P. X-ray emission spectroscopy. Photosynth. Res. 102, 255–266 (2009).
R. Nascimento, D. & Govind, N. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods. Phys. Chem. Chem. Phys. 24, 14680–14691 (2022).
Pollock, C. J. & DeBeer, S. Insights into the geometric and electronic structure of transition metal centers from valence-to-core X-ray emission spectroscopy. Acc. Chem. Res. 48, 2967–2975 (2015).
Smith, J. W. & Saykally, R. J. Soft X-ray absorption spectroscopy of liquids and solutions. Chem. Rev. 117, 13909–13934 (2017).
Gel’mukhanov, F., Odelius, M., Polyutov, S. P., Föhlisch, A. & Kimberg, V. Dynamics of resonant x-ray and Auger scattering. Rev. Mod. Phys. 93, 035001 (2021).
Eisebitt, S. & Eberhardt, W. Band structure information and resonant inelastic soft X-ray scattering in broad band solids. J. Electron. Spectrosc. Relat. Phenom. 110–111, 335–358 (2000).
Kalha, C. et al. Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. J. Phys. Condens. Matter 33, 233001 (2021).
de Groot, F. M. F. et al. Resonant inelastic X-ray scattering. Nat. Rev. Methods Primers 4, 45 (2024).
Cramer, S. P. X-Ray Spectroscopy with Synchrotron Radiation: Fundamentals and Applications (Springer, 2020).
Raimondi, P. et al. The Extremely Brilliant Source storage ring of the European Synchrotron Radiation Facility. Commun. Phys. 6, 82 (2023).
Zimmermann, P. et al. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coord. Chem. Rev. 423, 213466 (2020).
Malzer, W. et al. A laboratory spectrometer for high throughput X-ray emission spectroscopy in catalysis research. Rev. Sci. Instrum. 89, 113111 (2018).
Mantouvalou, I. et al. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy. Rev. Sci. Instrum. 86, 035116 (2015).
Miaja-Avila, L. et al. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy. Struct. Dyn. 2, 024301 (2015).
Schoenlein, R. et al. Recent advances in ultrafast X-ray sources. Philos. Trans. R. Soc. A 377, 20180384 (2019).
Chergui, M. & Collet, E. Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods. Chem. Rev. 117, 11025–11065 (2017).
Principi, E. Preface to special topic: the advent of ultrafast X-ray absorption spectroscopy. Struct. Dyn. 11, 030401 (2024).
Reinhard, M. et al. Solution phase high repetition rate laser pump x-ray probe picosecond hard x-ray spectroscopy at the Stanford Synchrotron Radiation Lightsource. Struct. Dyn. 10, 054304 (2023).
Silatani, M. et al. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy. Proc. Natl Acad. Sci. USA 112, 12922–12927 (2015).
Reinhard, M. et al. Ferricyanide photo-aquation pathway revealed by combined femtosecond Kβ main line and valence-to-core x-ray emission spectroscopy. Nat. Commun. 14, 2443 (2023).
Milne, C. J. et al. Disentangling the evolution of electrons and holes in photoexcited ZnO nanoparticles. Struct. Dyn. 10, 064501 (2023).
Weakly, R. B. et al. Revealing core-valence interactions in solution with femtosecond X-ray pump X-ray probe spectroscopy. Nat. Commun. 14, 3384 (2023).
Anwar, M. I. et al. Ultrafast x-ray absorption near edge spectroscopy of Fe3O4 using a laboratory based femtosecond x-ray source. Opt. Express 27, 6030–6036 (2019).
Lafuerza, S. et al. New reflections on hard X-ray photon-in/photon-out spectroscopy. Nanoscale 12, 16270–16284 (2020).
Capano, G. et al. Probing wavepacket dynamics using ultrafast x-ray spectroscopy. J. Phys. B 48, 214001 (2015).
Kowalska, J. K., Lima, F. A., Pollock, C. J., Rees, J. A. & DeBeer, S. A practical guide to high-resolution X-ray spectroscopic measurements and their applications in bioinorganic chemistry. Isr. J. Chem. 56, 803–815 (2016).
Uhlig, J. et al. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential. J. Synchrotron Radiat. 22, 766–775 (2015).
Titus, C. J. et al. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array. J. Chem. Phys. 147, 214201 (2017).
Doronkin, D. E. et al. NH3-SCR over V–W/TiO2 investigated by operando X-ray absorption and emission spectroscopy. J. Phys. Chem. C 123, 14338–14349 (2019).
Black, A. P. et al. Synchrotron radiation based operando characterization of battery materials. Chem. Sci. 14, 1641–1665 (2023).
Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495 (2013).
Rabeah, J. et al. Multivariate analysis of coupled operando EPR/XANES/EXAFS/UV–Vis/ATR-IR spectroscopy: a new dimension for mechanistic studies of catalytic gas-liquid phase reactions. Chem. Eur. J. 26, 7395–7404 (2020).
DiMucci, I. M. et al. The myth of d8 copper(III). J. Am. Chem. Soc. 141, 8508–18520 (2019).
Vogt, L. I. et al. Sulfur X-ray absorption and emission spectroscopy of organic sulfones. J. Phys. Chem. A 127, 3692–3704 (2023).
Azzam, S. A. et al. Insights into copper sulfide formation from Cu and S K edge XAS and DFT studies. Inorg. Chem. 59, 15276–15288 (2020).
Liu, Y. et al. Cu4S cluster in “0-hole” and “1-hole” states: geometric and electronic structure variations for the active CuZ* site of N2O reductase. J. Am. Chem. Soc. 145, 18477–18486 (2023).
Maganas, D. et al. Combined experimental and ab initio multireference configuration interaction study of the resonant inelastic X-ray scattering spectrum of CO2. J. Phys. Chem. C 118, 20163–20175 (2014).
Atanasov, M., Ganyushin, D., Sivalingam, K. & Neese, F. in Molecular Electronic Structures of Transition Metal Complexes II. Structure and Bonding, Vol. 143 (eds Mingos, D. M. P., Day, P. & Dahl, J. P.) 149–220 (Springer, 2012).
Izsák, R., Ivanov, A. V., Blunt, N. S., Holzmann, N. & Neese, F. Measuring electron correlation: the impact of symmetry and orbital transformations. J. Chem. Theory Comput. 19, 2703–2720 (2023).
de Groot, F. M. F. et al. 2p x-ray absorption spectroscopy of 3d transition metal systems. J. Electron. Spectrosc. Relat. Phenom. 249, 147061 (2021).
Vinson, J. & Rehr, J. J. Ab initio Bethe-Salpeter calculations of the x-ray absorption spectra of transition metals at the L-shell edges. Phys. Rev. B 86, 195135 (2012).
Krüger, P. Multichannel multiple scattering calculation of L2,3-edge spectra of TiO2 and SrTiO3: importance of multiplet coupling and band structure. Phys. Rev. B 81, 125121 (2010).
Martin, R. L. Natural transition orbitals. J. Chem. Phys. 118, 4775–4777 (2003).
Maganas, D., DeBeer, S. & Neese, F. Pair natural orbital restricted open-shell configuration interaction (PNO-ROCIS) approach for calculating X-ray absorption spectra of large chemical systems. J. Phys. Chem. A 122, 1215–1227 (2018).
Neese, F. Software update: the ORCA program system — Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).
Li Manni, G. et al. The OpenMolcas web: a community-driven approach to advancing computational chemistry. J. Chem. Theory Comput. 19, 6933–6991 (2023).
Delcey, M. G. MultiPsi: a python-driven MCSCF program for photochemistry and spectroscopy simulations on modern HPC environments. Wiley Interdiscip. Rev. Comput. Mol. Sci. 13, e1675 (2023).
te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).
Aprà, E. et al. NWChem: past, present, and future. J. Chem. Phys. 152, 184102 (2020).
Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).
Kowalska, J. K. et al. Iron L2,3-edge X-ray absorption and X-ray magnetic circular dichroism studies of molecular iron complexes with relevance to the FeMoco and FeVco active sites of nitrogenase. Inorg. Chem. 56, 8147–8158 (2017).
Hocking, R. K. et al. Fe L-edge XAS studies of K4[Fe(CN)6] and K3[Fe(CN)6]: a direct probe of back-bonding. J. Am. Chem. Soc. 128, 10442–10451 (2006).
Westre, T. E. et al. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119, 6297–6314 (1997).
Pollock, C. J., Delgado-Jaime, M. U., Atanasov, M., Neese, F. & DeBeer, S. Kβ mainline X-ray emission spectroscopy as an experimental probe of metal–ligand covalency. J. Am. Chem. Soc. 136, 9453–9463 (2014).
Lee, N., Petrenko, T., Bergmann, U., Neese, F. & DeBeer, S. Probing valence orbital composition with iron Kβ X-ray emission spectroscopy. J. Am. Chem. Soc. 132, 9715–9727 (2010).
Geoghegan, B. L. et al. Combining valence-to-core X-ray emission and Cu K-edge X-ray absorption spectroscopies to experimentally assess oxidation state in organometallic Cu(I)/(II)/(III) complexes. J. Am. Chem. Soc. 144, 2520–2534 (2022).
McCubbin Stepanic, O. et al. Probing a silent metal: a combined X-ray absorption and emission spectroscopic study of biologically relevant zinc complexes. Inorg. Chem. 59, 13551–13560 (2020).
Glatzel, P., Bergmann, U., de Groot, F. M. F. & Cramer, S. P. Multiple excitations in the K fluorescence emission of Mn, Fe and Ni compounds. AIP Conf. Proc. 652, 250–255 (2003).
Lim, H. et al. Kβ X-ray emission spectroscopy as a probe of Cu(I) sites: application to the Cu(I) site in preprocessed galactose oxidase. Inorg. Chem. 59, 16567–16581 (2020).
Woicik, J. C. et al. Charge-transfer satellites and chemical bonding in photoemission and x-ray absorption of SrTiO3 and rutile TiO2: experiment and first-principles theory with general application to spectroscopic analysis. Phys. Rev. B 101, 245119 (2020).
Ghiasi, M. et al. Charge-transfer effect in hard x-ray 1s and 2p photoemission spectra: LDA + MDFT and cluster-model analysis. Phys. Rev. B 100, 075146 (2019).
Safonov, V. A. et al. Valence-to-core X-ray emission spectroscopy identification of carbide compounds in nanocrystalline Cr coatings deposited from Cr(III) electrolytes containing organic substances. J. Phys. Chem. B 110, 23192–23196 (2006).
Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334, 974–977 (2011).
Smolentsev, G. et al. X-ray emission spectroscopy to study ligand valence orbitals in Mn coordination complexes. J. Am. Chem. Soc. 131, 13161–13167 (2009).
Mijovilovich, A., Hamman, S., Thomas, F., de Groot, F. M. F. & Weckhuysen, B. M. Protonation of the oxygen axial ligand in galactose oxidase model compounds as seen with high resolution X-ray emission experiments and FEFF simulations. Phys. Chem. Chem. Phys. 13, 5600–5604 (2011).
Leidel, N. et al. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection. J. Am. Chem. Soc. 134, 14142–14157 (2012).
Lassalle-Kaiser, B. et al. Experimental and computational X-ray emission spectroscopy as a direct probe of protonation states in oxo-bridged MnIV dimers relevant to redox-active metalloproteins. Inorg. Chem. 52, 12915–12922 (2013).
Mathe, Z. et al. Calcium valence-to-core X-ray emission spectroscopy: a sensitive probe of oxo protonation in structural models of the oxygen-evolving complex. Inorg. Chem. 58, 16292–16301 (2019).
Kositzki, R. et al. Protonation state of MnFe and FeFe cofactors in a ligand-binding oxidase revealed by X-ray absorption, emission, and vibrational spectroscopy and QM/MM calculations. Inorg. Chem. 55, 9869–9885 (2016).
Lancaster, K. M., Finkelstein, K. D. & DeBeer, S. Kβ X-ray emission spectroscopy offers unique chemical bonding insights: revisiting the electronic structure of ferrocene. Inorg. Chem. 50, 6767–6774 (2011).
Phu, P. N. et al. Quantification of Ni–N–O bond angles and NO activation by X-ray emission spectroscopy. Inorg. Chem. 60, 736–744 (2021).
Pollock, C. J., Grubel, K., Holland, P. L. & DeBeer, S. Experimentally quantifying small-molecule bond activation using valence-to-core X-ray emission spectroscopy. J. Am. Chem. Soc. 135, 11803–11808 (2013).
Zhang, Y., Mukamel, S., Khalil, M. & Govind, N. Simulating valence-to-core X-ray emission spectroscopy of transition metal complexes with time-dependent density functional theory. J. Chem. Theory Comput. 11, 5804–5809 (2015).
Hanson-Heine, M. W. D., George, M. W. & Besley, N. A. Kohn-Sham density functional theory calculations of non-resonant and resonant x-ray emission spectroscopy. J. Chem. Phys. 146, 094106 (2017).
Samal, B. & Voora, V. K. Modeling nonresonant X-ray emission of second- and third-period elements without core-hole reference states and empirical parameters. J. Chem. Theory Comput. 18, 7272–7285 (2022).
Lim, H. et al. Kβ X-ray emission spectroscopy of Cu(I)-lytic polysaccharide monooxygenase: direct observation of the frontier molecular orbital for H2O2 activation. J. Am. Chem. Soc. 145, 16015–16025 (2023).
Mortensen, D. R. et al. Benchmark results and theoretical treatments for valence-to-core x-ray emission spectroscopy in transition metal compounds. Phys. Rev. B 96, 125136 (2017).
Römelt, C., Peredkov, S., Neese, F., Roemelt, M. & DeBeer, S. Valence-to-core X-ray emission spectroscopy of transition metal tetrahalides: mechanisms governing intensities. Phys. Chem. Chem. Phys. 26, 19960–19975 (2024).
Jahrman, E. P. et al. Valence-to-core X-ray emission spectroscopy of vanadium oxide and lithiated vanadyl phosphate materials. J. Mater. Chem. A 8, 16332–16344 (2020).
Valenza, R. A., Jahrman, E. P., Kas, J. J. & Seidler, G. T. Double-ionization satellites in the x-ray emission spectrum of Ni metal. Phys. Rev. A 96, 032504 (2017).
Sternemann, C., Kaprolat, A., Krisch, M. H. & Schülke, W. Evolution of the germanium Kβ′′′ x-ray satellites from threshold to saturation. Phys. Rev. A 61, 020501 (2000).
Zhang, Y., Bergmann, U., Schoenlein, R., Khalil, M. & Govind, N. Double core hole valence-to-core x-ray emission spectroscopy: a theoretical exploration using time-dependent density functional theory. J. Chem. Phys. 151, 144114 (2019).
Rana, A., Peredkov, S., Behrens, M. & DeBeer, S. Probing the local environment in potassium salts and potassium-promoted catalysts by potassium valence-to-core X-ray emission spectroscopy. Inorg. Chem. 63, 16217–16223 (2024).
Gütlich, P., Bill, E. & Trautwein, A. X. Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications (Springer, 2011).
Keilwerth, M. et al. The synthesis and characterization of an iron(VII) nitrido complex. Nat. Chem. 16, 514–520 (2024).
Wilson, D. W. N. et al. Three-coordinate nickel and metal–metal interactions in a heterometallic iron–sulfur cluster. J. Am. Chem. Soc. 146, 4013–4025 (2024).
Castillo, R. G. et al. High-energy-resolution fluorescence-detected X-ray absorption of the Q intermediate of soluble methane monooxygenase. J. Am. Chem. Soc. 139, 18024–18033 (2017).
Ledray, A. P., Krest, C. M., Yosca, T. H., Mittra, K. & Green, M. T. Ascorbate peroxidase compound II is an iron(IV) oxo species. J. Am. Chem. Soc. 142, 20419–20425 (2020).
Chrysina, M. et al. Nature of S-states in the oxygen-evolving complex resolved by high-energy resolution fluorescence detected X-ray absorption spectroscopy. J. Am. Chem. Soc. 145, 25579–25594 (2023).
Kutzler, F. W. et al. Single-crystal polarized x-ray absorption spectroscopy. Observation and theory for thiomolybdate(2-). J. Am. Chem. Soc. 103, 6083–6088 (1981).
Shadle, S. E. et al. X-ray absorption spectroscopic studies of the blue copper site: metal and ligand K-edge studies to probe the origin of the EPR hyperfine splitting in plastocyanin. J. Am. Chem. Soc. 115, 767–776 (1993).
Yano, J. et al. Polarized X-ray absorption spectroscopy of single-crystal Mn(V) complexes relevant to the oxygen-evolving complex of photosystem II. J. Am. Chem. Soc. 129, 12989–13000 (2007).
Martin-Diaconescu, V. et al. Ca K-edge XAS as a probe of calcium centers in complex systems. Inorg. Chem. 54, 1283–1292 (2015).
Gerz, I. et al. Structural elucidation, aggregation, and dynamic behaviour of N,N,N,N-copper(I) Schiff base complexes in solid and in solution: a combined NMR, X-ray spectroscopic and crystallographic investigation. Eur. J. Inorg. Chem. 2021, 4762–4775 (2021).
Guo, M., Sørensen, L. K., Delcey, M. G., Pinjari, R. V. & Lundberg, M. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method. Phys. Chem. Chem. Phys. 18, 3250–3259 (2016).
Guo, M. et al. HERFD-XANES probes of electronic structures of ironII/III carbene complexes. Phys. Chem. Chem. Phys. 22, 9067–9073 (2020).
Ghosh, S., Mukamel, S. & Govind, N. A combined wave function and density functional approach for K-edge X-ray absorption near-edge spectroscopy: a case study of hydrated first-row transition metal ions. J. Phys. Chem. Lett. 14, 5203–5209 (2023).
Borfecchia, E. et al. Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem. Sci. 6, 548–563 (2015).
Guda, A. et al. Excited-state structure of copper phenanthroline-based photosensitizers. Phys. Chem. Chem. Phys. 23, 26729–26736 (2021).
DeBeer George, S., Petrenko, T. & Neese, F. Time-dependent density functional calculations of ligand K-edge X-ray absorption spectra. Inorg. Chim. Acta 361, 965–972 (2008).
Foglia, N. O., Maganas, D. & Neese, F. Going beyond the electric-dipole approximation in the calculation of absorption and (magnetic) circular dichroism spectra including scalar relativistic and spin–orbit coupling effects. J. Chem. Phys. 157, 084120 (2022).
Sørensen, L. K., Kieri, E., Srivastav, S., Lundberg, M. & Lindh, R. Implementation of a semiclassical light-matter interaction using the Gauss-Hermite quadrature: a simple alternative to the multipole expansion. Phys. Rev. A 99, 013419 (2019).
C. Tomson, N. et al. Re-evaluating the Cu K pre-edge XAS transition in complexes with covalent metal–ligand interactions. Chem. Sci. 6, 2474–2487 (2015).
Desnoyer, A. N. et al. The importance of ligand-induced backdonation in the stabilization of square planar d10 nickel π-complexes. Chem. Eur. J. 25, 5259–5268 (2019).
Lewis, L. C., Sanabria-Gracia, J. A., Lee, Y., Jenkins, A. J. & Shafaat, H. S. Electronic isomerism in a heterometallic nickel–iron–sulfur cluster models substrate binding and cyanide inhibition of carbon monoxide dehydrogenase. Chem. Sci. 15, 5916–5928 (2024).
Penfold, T. J. et al. Solvent-induced luminescence quenching: static and time-resolved X-ray absorption spectroscopy of a copper(I) phenanthroline complex. J. Phys. Chem. A 117, 4591–4601 (2013).
Roemelt, M. et al. Manganese K-edge X-ray absorption spectroscopy as a probe of the metal–ligand interactions in coordination compounds. Inorg. Chem. 51, 680–687 (2012).
Kowalska, J. K. et al. X-ray absorption and emission spectroscopic studies of [L2Fe2S2]n model complexes: implications for the experimental evaluation of redox states in iron–sulfur clusters. Inorg. Chem. 55, 4485–4497 (2016).
Abbehausen, C. et al. X-ray absorption spectroscopy combined with time-dependent density functional theory elucidates differential substitution pathways of Au(I) and Au(III) with zinc fingers. Inorg. Chem. 57, 218–230 (2018).
Martini, A. et al. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chem. Sci. 8, 6836–6851 (2017).
Ross, M. et al. Comprehensive experimental and computational spectroscopic study of hexacyanoferrate complexes in water: from infrared to X-ray wavelengths. J. Phys. Chem. B 122, 5075–5086 (2018).
Groot, F. de & Kotani, A. Core Level Spectroscopy of Solids (CRC Press, 2008).
Jayarathne, U. et al. X-ray absorption spectroscopy systematics at the tungsten L-edge. Inorg. Chem. 53, 8230–8241 (2014).
Sarangi, R. et al. X-ray absorption edge spectroscopy and computational studies on LCuO2 species: superoxide−CuII versus peroxide−CuIII bonding. J. Am. Chem. Soc. 128, 8286–8296 (2006).
Kubas, A., Verkamp, M., Vura-Weis, J., Neese, F. & Maganas, D. A restricted open configuration interaction singles study on M- and L-edge X-ray absorption spectroscopy of solid chemical systems. J. Chem. Theory Comput. 14, 4320–4334 (2018).
Roemelt, M., Maganas, D., DeBeer, S. & Neese, F. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: application to transition metal L-edge X-ray absorption spectroscopy. J. Chem. Phys. 138, 204101 (2013).
Neese, F., Lang, L. & Chilkuri, V. G. in Topology, Entanglement, and Strong Correlations. Modeling and Simulation, Vol. 10 (eds Pavarini, E. & Koch, E.) Ch. 4 (Jülich, 2020).
Asada, S., Satoko, C. & Sugano, S. Multiplet structure in X-ray p-shell photoelectron and K-emission spectra of nickel compounds. J. Phys. Soc. Jpn. 38, 855–865 (1975).
Thole, B. T., Van Der Laan, G. & Butler, P. H. Spin-mixed ground state of Fe phthalocyanine and the temperature-dependent branching ratio in X-ray absorption spectroscopy. Chem. Phys. Lett. 149, 295–299 (1988).
Braun, A. et al. X-ray spectroscopic study of the electronic structure of a trigonal high-spin Fe(IV)═O complex modeling non-heme enzyme intermediates and their reactivity. J. Am. Chem. Soc. 145, 18977–18991 (2023).
Haverkort, M. W., Zwierzycki, M. & Andersen, O. K. Multiplet ligand-field theory using Wannier orbitals. Phys. Rev. B 85, 165113 (2012).
Ramanantoanina, H. & Daul, C. A non-empirical calculation of 2p core-electron excitation in compounds with 3d transition metal ions using ligand-field and density functional theory (LFDFT). Phys. Chem. Chem. Phys. 19, 20919–20929 (2017).
Singh, S. K., Eng, J., Atanasov, M. & Neese, F. Covalency and chemical bonding in transition metal complexes: an ab initio based ligand field perspective. Coord. Chem. Rev. 344, 2–25 (2017).
Chantzis, A., Kowalska, J. K., Maganas, D., DeBeer, S. & Neese, F. Ab initio wave function-based determination of element specific shifts for the efficient calculation of X-ray absorption spectra of main group elements and first row transition metals. J. Chem. Theory Comput. 14, 3686–3702 (2018).
Maganas, D., Kowalska, J. K., Van Stappen, C., DeBeer, S. & Neese, F. Mechanism of L2,3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment — a case study on V(IV)/V(III) complexes. J. Chem. Phys. 152, 114107 (2020).
Van Stappen, C. et al. Correlating valence and 2p3d RIXS spectroscopies: a ligand-field study of spin-crossover iron(II). Inorg. Chem. 63, 7386–7400 (2024).
Birsen Boydas, E. & Roemelt, M. The trials and triumphs of modelling X-ray absorption spectra of transition metal phthalocyanines. Phys. Chem. Chem. Phys. 26, 20376–20387 (2024).
Malmqvist, P. A., Pierloot, K., Shahi, A. R. M., Cramer, C. J. & Gagliardi, L. The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J. Chem. Phys. 128, 204109 (2008).
Pinjari, R. V., Delcey, M. G., Guo, M., Odelius, M. & Lundberg, M. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states. J. Chem. Phys. 141, 124116 (2014).
Josefsson, I. et al. Ab initio calculations of X-ray spectra: atomic multiplet and molecular orbital effects in a multiconfigurational SCF approach to the L-edge spectra of transition metal complexes. J. Phys. Chem. Lett. 3, 3565–3570 (2012).
Boydas, E. B., Winter, B., Batchelor, D. & Roemelt, M. Insight into the X-ray absorption spectra of Cu-porphyrazines from electronic structure theory. Int. J. Quantum Chem. 121, e26515 (2021).
Guo, Y., Sivalingam, K., Valeev, E. F. & Neese, F. SparseMaps — A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. J. Chem. Phys. 144, 094111 (2016).
Menezes, F., Kats, D. & Werner, H.-J. Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2). J. Chem. Phys. 145, 124115 (2016).
Maganas, D., Kowalska, J. K., Nooijen, M., DeBeer, S. & Neese, F. Comparison of multireference ab initio wavefunction methodologies for X-ray absorption edges: a case study on [Fe(II/III)Cl4]2−/1− molecules. J. Chem. Phys. 150, 104106 (2019).
Helmich-Paris, B. Simulating X-ray absorption spectra with complete active space self-consistent field linear response methods. Int. J. Quantum Chem. 121, e26559 (2021).
Bagus, P. S., Nelin, C. J., Ilton, E. S., Sassi, M. J. & Rosso, K. M. Analysis of X-ray adsorption edges: L2,3 edge of FeCl4−. J. Chem. Phys. 147, 224306 (2017).
Ganyushin, D. & Neese, F. A fully variational spin-orbit coupled complete active space self-consistent field approach: application to electron paramagnetic resonance g-tensors. J. Chem. Phys. 138, 104113 (2013).
Brik, M. G., Ogasawara, K., Ikeno, H. & Tanaka, I. Fully relativistic calculations of the L2,3-edge XANES spectra for vanadium oxides. Eur. Phys. J. B 51, 345–355 (2006).
Bagus, P. S., Freund, H., Kuhlenbeck, H. & Ilton, E. S. A new analysis of X-ray adsorption branching ratios: use of Russell–Saunders coupling. Chem. Phys. Lett. 455, 331–334 (2008).
Bjornsson, R. et al. Molybdenum L-Edge XAS spectra of MoFe nitrogenase. Z. Anorg. Allg. Chem. 641, 65–71 (2015).
Jay, R. M. et al. Tracking C–H activation with orbital resolution. Science 380, 955–960 (2023).
Van Kuiken, B. E. et al. Simulating Ru L3-Edge X-ray absorption spectroscopy with time-dependent density functional theory: model complexes and electron localization in mixed-valence metal dimers. J. Phys. Chem. A 117, 4444–4454 (2013).
Alperovich, I. et al. Understanding the electronic structure of 4d metal complexes: from molecular spinors to L-edge spectra of a di-Ru catalyst. J. Am. Chem. Soc. 133, 15786–15794 (2011).
Carra, P., Thole, B. T., Altarelli, M. & Wang, X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694–697 (1993).
Funk, T., Deb, A., George, S. J., Wang, H. & Cramer, S. P. X-ray magnetic circular dichroism — a high energy probe of magnetic properties. Coord. Chem. Rev. 249, 3–30 (2005).
Piamonteze, C., Miedema, P. & de Groot, F. M. F. Accuracy of the spin sum rule in XMCD for the transition-metal L edges from manganese to copper. Phys. Rev. B 80, 184410 (2009).
Guo, M., Braun, A., Sokaras, D. & Kroll, T. Iron Kβ X-ray emission spectroscopy: the origin of spectral features from atomic to molecular systems using multi-configurational calculations. J. Phys. Chem. A 128, 1260–1273 (2024).
Ito, Y. et al. Structure of high-resolution Kβ1,3 x-ray emission spectra for the elements from Ca to Ge. Phys. Rev. A 97, 052505 (2018).
Nguyen, T. V. B., Melia, H. A., Janssens, F. I. & Chantler, C. T. Multiconfiguration Dirac-Hartree-Fock theory for copper Kα and Kβ diagram lines, satellite spectra, and ab initio determination of single and double shake probabilities. Phys. Rev. A 105, 022811 (2022).
Glatzel, P. et al. The electronic structure of Mn in oxides, coordination complexes, and the oxygen-evolving complex of photosystem II studied by resonant inelastic X-ray scattering. J. Am. Chem. Soc. 126, 9946–9959 (2004).
Peng, G. et al. High-resolution manganese x-ray fluorescence spectroscopy. Oxidation-state and spin-state sensitivity. J. Am. Chem. Soc. 116, 2914–2920 (1994).
Glatzel, P., Jacquamet, L., Bergmann, U., de Groot, F. M. F. & Cramer, S. P. Site-selective EXAFS in mixed-valence compounds using high-resolution fluorescence detection: a study of iron in Prussian Blue. Inorg. Chem. 41, 3121–3127 (2002).
Norman, P. & Dreuw, A. Simulating X-ray spectroscopies and calculating core-excited states of molecules. Chem. Rev. 118, 7208–7248 (2018).
Maganas, D., DeBeer, S. & Neese, F. A restricted open configuration interaction with singles method to calculate valence-to-core resonant X-ray emission spectra: a case study. Inorg. Chem. 56, 11819–11836 (2017).
Eisenberger, P., Platzman, P. M. & Winick, H. X-ray resonant Raman scattering: observation of characteristic radiation narrower than the lifetime width. Phys. Rev. Lett. 36, 623–626 (1976).
Hämäläinen, K., Siddons, D. P., Hastings, J. B. & Berman, L. E. Elimination of the inner-shell lifetime broadening in x-ray-absorption spectroscopy. Phys. Rev. Lett. 67, 2850–2853 (1991).
Hayashi, H., Udagawa, Y., Caliebe, W. A. & Kao, C.-C. Lifetime-broadening removed X-ray absorption near edge structure by resonant inelastic X-ray scattering spectroscopy. Chem. Phys. Lett. 371, 125–130 (2003).
de Groot, F. M. F., Krisch, M. H. & Vogel, J. Spectral sharpening of the Pt L edges by high-resolution x-ray emission. Phys. Rev. B 66, 195112 (2002).
Carra, P., Fabrizio, M. & Thole, B. T. High resolution X-ray resonant Raman scattering. Phys. Rev. Lett. 74, 3700–3703 (1995).
Chernev, P. et al. Hydride binding to the active site of [FeFe]-hydrogenase. Inorg. Chem. 53, 12164–12177 (2014).
Castillo, R. G. et al. Probing physical oxidation state by resonant X-ray emission spectroscopy: applications to iron model complexes and nitrogenase. Angew. Chem. Int. Ed. 60, 10112–10121 (2021).
Hall, E. R. et al. Valence-to-core-detected X-ray absorption spectroscopy: targeting ligand selectivity. J. Am. Chem. Soc. 136, 10076–10084 (2014).
Biasin, E. et al. Revealing the bonding of solvated Ru complexes with valence-to-core resonant inelastic X-ray scattering. Chem. Sci. 12, 3713–3725 (2021).
Banerjee, A. et al. Accessing metal-specific orbital interactions in C–H activation with resonant inelastic X-ray scattering. Chem. Sci. 15, 2398–2409 (2024).
Van Kuiken, B. E., Hahn, A. W., Maganas, D. & DeBeer, S. Measuring spin-allowed and spin-forbidden d–d excitations in vanadium complexes with 2p3d resonant inelastic X-ray Scattering. Inorg. Chem. 55, 11497–11501 (2016).
Hunault, M. O. J. Y. et al. Direct observation of Cr3+ 3d states in ruby: toward experimental mechanistic evidence of metal chemistry. J. Phys. Chem. A 122, 4399–4413 (2018).
Hahn, A. W. et al. Measurement of the ligand field spectra of ferrous and ferric iron chlorides using 2p3d RIXS. Inorg. Chem. 56, 8203–8211 (2017).
Hahn, A. W. et al. Probing the valence electronic structure of low-spin ferrous and ferric complexes using 2p3d resonant inelastic X-ray scattering (RIXS). Inorg. Chem. 57, 9515–9530 (2018).
Jay, R. M. et al. Disentangling transient charge density and metal–ligand covalency in photoexcited ferricyanide with femtosecond resonant inelastic soft X-ray scattering. J. Phys. Chem. Lett. 9, 3538–3543 (2018).
Kunnus, K. et al. Viewing the valence electronic structure of ferric and ferrous hexacyanide in solution from the Fe and cyanide perspectives. J. Phys. Chem. B 120, 7182–7194 (2016).
Cutsail, G. E. et al. High-resolution iron X-ray absorption spectroscopic and computational studies of non-heme diiron peroxo intermediates. J. Inorg. Biochem. 203, 110877 (2020).
Henthorn, J. T. et al. Localized electronic structure of nitrogenase FeMoco revealed by selenium K-edge high resolution X-ray absorption spectroscopy. J. Am. Chem. Soc. 141, 13676–13688 (2019).
Fransson, T. et al. Effects of x-ray free-electron laser pulse intensity on the Mn Kβ1,3 x-ray emission spectrum in photosystem II — a case study for metalloprotein crystals and solutions. Struct. Dyn. 8, 064302 (2021).
Drosou, M., Comas-Vilà, G., Neese, F., Salvador, P. & Pantazis, D. A. Does serial femtosecond crystallography depict state-specific catalytic intermediates of the oxygen-evolving complex? J. Am. Chem. Soc. 145, 10604–10621 (2023).
Zaharieva, I. et al. Room-temperature energy-sampling Kβ X-ray emission spectroscopy of the Mn4Ca complex of photosynthesis reveals three manganese-centered oxidation steps and suggests a coordination change prior to O2 formation. Biochemistry 55, 4197–4211 (2016).
Glatzel, P. et al. Electronic structural changes of Mn in the oxygen-evolving complex of photosystem II during the catalytic cycle. Inorg. Chem. 52, 5642–5644 (2013).
Einsle, O. et al. Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297, 1696–1700 (2002).
Rees, J. A. et al. The Fe–V cofactor of vanadium nitrogenase contains an interstitial carbon atom. Angew. Chem. Int. Ed. 54, 13249–13252 (2015).
Decamps, L., Rice, D. & DeBeer, S. An Fe6C core in all nitrogenase cofactors. Angew. Chem. Int. Ed. 61, e202209190 (2022).
Bjornsson, R. et al. Identification of a spin-coupled Mo(III) in the nitrogenase iron–molybdenum cofactor. Chem. Sci. 5, 3096–3103 (2014).
Kowalska, J. K. et al. X-ray magnetic circular dichroism spectroscopy applied to nitrogenase and related models: experimental evidence for a spin-coupled molybdenum(III) center. Angew. Chem. Int. Ed. 58, 9373–9377 (2019).
Spatzal, T., Perez, K. A., Howard, J. B. & Rees, D. C. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor. eLife 4, e11620 (2015).
Mebs, S., Braun, B., Kositzki, R., Limberg, C. & Haumann, M. Abrupt versus gradual spin-crossover in FeII(phen)2(NCS)2 and FeIII(dedtc)3 compared by X-ray absorption and emission spectroscopy and quantum-chemical calculations. Inorg. Chem. 54, 11606–11624 (2015).
Smolentsev, G., Soldatov, A. V. & Chen, L. X. Three-dimensional local structure of photoexcited Cu diimine complex refined by quantitative XANES analysis. J. Phys. Chem. A 112, 5363–5367 (2008).
Velasco, L. et al. Mapping the ultrafast mechanistic pathways of Co photocatalysts in pure water through time-resolved X-ray spectroscopy. ChemSusChem 16, e202300719 (2023).
Moonshiram, D. et al. Tracking the structural and electronic configurations of a cobalt proton reduction catalyst in water. J. Am. Chem. Soc. 138, 10586–10596 (2016).
Li, Z.-J. et al. Tracking Co(I) intermediate in operando in photocatalytic hydrogen evolution by X-ray transient absorption spectroscopy and DFT calculation. J. Phys. Chem. Lett. 7, 5253–5258 (2016).
Smolentsev, G. et al. Structure of the CoI intermediate of a cobalt pentapyridyl catalyst for hydrogen evolution revealed by time-resolved X-ray spectroscopy. ChemSusChem 11, 3087–3091 (2018).
Kunnus, K. et al. Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering. Nat. Commun. 11, 634 (2020).
Katayama, T. et al. Tracking multiple components of a nuclear wavepacket in photoexcited Cu(I)-phenanthroline complex using ultrafast X-ray spectroscopy. Nat. Commun. 10, 3606 (2019).
Rogvall, J., Singh, R., Vacher, M. & Lundberg, M. Sensitivity of Kβ mainline X-ray emission to structural dynamics in iron photosensitizer. Phys. Chem. Chem. Phys. 25, 10447–10459 (2023).
Liekhus-Schmaltz, C. et al. Femtosecond X-ray spectroscopy directly quantifies transient excited-state mixed valency. J. Phys. Chem. Lett. 13, 378–386 (2022).
Capano, G., Chergui, M., Rothlisberger, U., Tavernelli, I. & Penfold, T. J. A quantum dynamics study of the ultrafast relaxation in a prototypical Cu(I)–phenanthroline. J. Phys. Chem. A 118, 9861–9869 (2014).
Rankine, C. D. & Penfold, T. J. Progress in the theory of X-ray spectroscopy: from quantum chemistry to machine learning and ultrafast dynamics. J. Phys. Chem. A 125, 4276–4293 (2021).
Shaik, S. Two-state reactivity: personal recounting of its conception and future prospects. Isr. J. Chem. 60, 938–956 (2020).
Rice, D. B., Wong, D., Weyhermüller, T., Neese, F. & DeBeer, S. The spin-forbidden transition in iron(IV)-oxo catalysts relevant to two-state reactivity. Sci. Adv. 10, eado1603 (2024).
Liao, J., Yang, J., Wang, D. & Dong, J. Combining experiment and theory for precise structure identification of single-atom catalysts. Chem Catal. 2, 2114–2117 (2022).
Lomachenko, K. A. et al. The Cu-CHA deNOx catalyst in action: temperature-dependent NH3-assisted selective catalytic reduction monitored by operando XAS and XES. J. Am. Chem. Soc. 138, 12025–12028 (2016).
Lätsch, L. et al. Tracking coordination environment and reaction intermediates in homogeneous and heterogeneous epoxidation catalysts via Ti L2,3-edge near-edge X-ray absorption fine structures. J. Am. Chem. Soc. 146, 7456–7466 (2024).
Schoonjans, T. et al. The xraylib library for X-ray–matter interactions. Recent developments. Spectrochim. Acta B 66, 776–784 (2011).
Dittmer, A. Exploring Problems in Inorganic Solid-state Systems with Wavefunction-based Molecular Spectroscopy Methods. PhD thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn (2024).
Jannuzzi, S. A. V., Peredkov, S., Mathe, Z. S. & DeBeer, S. Fe valence-to-core X-ray emission spectra of iron tetrachloride salts. Edmond Open Research Data Repository https://doi.org/10.17617/3.NMPS8V (2025).
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
Pantazis, D. A., Chen, X. Y., Landis, C. R. & Neese, F. All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4, 908–919 (2008).
March, A. M. et al. Feasibility of valence-to-core X-ray emission spectroscopy for tracking transient species. J. Phys. Chem. C 119, 14571–14578 (2015).
Maganas, D. et al. First principles calculations of the structure and V L-edge X-ray absorption spectra of V2O5 using local pair natural orbital coupled cluster theory and spin–orbit coupled configuration interaction approaches. Phys. Chem. Chem. Phys. 15, 7260 (2013).
Staemmler, V. in Theoretical Aspects of Transition Metal Catalysis. Topics in Organometallic Chemistry, Vol. 12 (ed. Frenking, G.) 219–256 (Springer, 2005).
Hahn, A. W. Development and Application of Resonant Inelastic X-ray Scattering Spectroscopy in Inorganic Chemistry. PhD thesis, Ruhr-Universität Bochum (2018).
Grabenstetter, J. E., Tseng, T. J. & Grein, F. Generation of genealogical spin eigenfunctions. Int. J. Quantum Chem. 10, 143–149 (1976).
Chilkuri, V. G. & Neese, F. Comparison of many-particle representations for selected-CI I: a tree based approach. J. Comput. Chem. 42, 982–1005 (2021).
Neese, F. Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord. Chem. Rev. 253, 526–563 (2009).