• Anderson, P. More is different. Science 177, 393–396 (1972).

    Article 
    ADS 

    Google Scholar
     

  • Jou, D. & Restuccia, L. Mesoscopic transport equations and contemporary thermodynamics: an introduction. Contemp. Phys. 52, 465–474 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Iachello, F. & Zamfir, N. V. Quantum phase transitions in mesoscopic systems. Phys. Rev. Lett. 92, 212501 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Vidal, J. & Dusuel, S. Finite-size scaling exponents in the Dicke model. Europhys. Lett. 74, 817–822 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Stitely, K. C., Masson, S. J., Giraldo, A., Krauskopf, B. & Parkins, S. Superradiant switching, quantum hysteresis, and oscillations in a generalized Dicke model. Phys. Rev. A 102, 063702 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Karapetrov, G., Fedor, J., Iavarone, M., Rosenmann, D. & Kwok, W. K. Direct observation of geometrical phase transitions in mesoscopic superconductors by scanning tunneling microscopy. Phys. Rev. Lett. 95, 167002 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Bird, J. et al. Quantum transport in open mesoscopic cavities. Chaos Solitons Fractals 8, 1299–1324 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Knoll, A. et al. Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid. Nat. Mater. 3, 886–891 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Matheny, M. H. et al. Exotic states in a simple network of nanoelectromechanical oscillators. Science 363, eaav7932 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Wollack, E. A. et al. Quantum state preparation and tomography of entangled mechanical resonators. Nature 604, 463–467 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ren, H. et al. Topological phonon transport in an optomechanical system. Nat. Commun. 13, 3476 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Andrade, L. H. F. et al. Damped precession of the magnetization vector of superparamagnetic nanoparticles excited by femtosecond optical pulses. Phys. Rev. Lett. 97, 127401 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Thirion, C., Wernsdorfer, W. & Mailly, D. Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nat. Mater. 2, 524–527 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Bayha, L. et al. Observing the emergence of a quantum phase transition shell by shell. Nature 587, 583–587 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Brantut, J.-P., Meineke, J., Stadler, D., Krinner, S. & Esslinger, T. Conduction of ultracold fermions through a mesoscopic channel. Science 337, 1069–1071 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zeiher, J., Wolf, J., Isaacs, J. A., Kohler, J. & Stamper-Kurn, D. M. Tracking evaporative cooling of a mesoscopic atomic quantum gas in real time. Phys. Rev. X 11, 041017 (2021).


    Google Scholar
     

  • Gorman, D. J. et al. Engineering vibrationally assisted energy transfer in a trapped-ion quantum simulator. Phys. Rev. X 8, 011038 (2018).


    Google Scholar
     

  • Guo, Y. et al. Observation of the 2D–1D crossover in strongly interacting ultracold bosons. Nat. Phys. 20, 934–938 (2024).

    Article 

    Google Scholar
     

  • Safavi-Naini, A. et al. Verification of a many-ion simulator of the Dicke model through slow quenches across a phase transition. Phys. Rev. Lett. 121, 040503 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

    Article 

    Google Scholar
     

  • Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article 

    Google Scholar
     

  • Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553–601 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mivehvar, F., Piazza, F., Donner, T. & Ritsch, H. Cavity QED with quantum gases: new paradigms in many-body physics. Adv. Phys. 70, 1–153 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kirton, P., Roses, M. M., Keeling, J. & Dalla Torre, E. G. Introduction to the Dicke model: from equilibrium to nonequilibrium, and vice versa. Adv. Quantum Technol. 2, 1800043 (2019).

    Article 

    Google Scholar
     

  • Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Morales, A., Zupancic, P., Léonard, J., Esslinger, T. & Donner, T. Coupling two order parameters in a quantum gas. Nat. Mater. 17, 686–690 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670–673 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhiqiang, Z. et al. Nonequilibrium phase transition in a spin-1 Dicke model. Optica 4, 424–429 (2017).

    Article 

    Google Scholar
     

  • Black, A. T., Chan, H. W. & Vuletić, V. Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering. Phys. Rev. Lett. 91, 203001 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Deist, E. et al. Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129, 203602 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Deist, E., Gerber, J. A., Lu, Y.-H., Zeiher, J. & Stamper-Kurn, D. M. Superresolution microscopy of optical fields using tweezer-trapped single atoms. Phys. Rev. Lett. 128, 083201 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Phys. Scr. 1998, 127 (1998).

    Article 

    Google Scholar
     

  • Yan, Z. et al. Superradiant and subradiant cavity scattering by atom arrays. Phys. Rev. Lett. 131, 253603 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Reimann, R. et al. Cavity-modified collective Rayleigh scattering of two atoms. Phys. Rev. Lett. 114, 023601 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Begley, S., Vogt, M., Gulati, G. K., Takahashi, H. & Keller, M. Optimized multi-ion cavity coupling. Phys. Rev. Lett. 116, 223001 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Neuzner, A., Körber, M., Morin, O., Ritter, S. & Rempe, G. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity. Nat. Photon. 10, 303–306 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Schütz, S., Jäger, S. B. & Morigi, G. Thermodynamics and dynamics of atomic self-organization in an optical cavity. Phys. Rev. A 92, 063808 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Arnold, K. J., Baden, M. P. & Barrett, M. D. Self-organization threshold scaling for thermal atoms coupled to a cavity. Phys. Rev. Lett. 109, 153002 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Niedenzu, W., Grießer, T. & Ritsch, H. Kinetic theory of cavity cooling and self-organisation of a cold gas. Europhys. Lett. 96, 43001 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Landau, L. in On the Theory of Phase Transitions 193–216 (Elsevier, 1965).

  • Zhang, X. et al. Observation of a superradiant quantum phase transition in an intracavity degenerate Fermi gas. Science 373, 1359–1362 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Néel, L. Thermoremanent magnetization of fine powders. Rev. Mod. Phys. 25, 293–295 (1953).

    Article 
    ADS 

    Google Scholar
     

  • Knobel, M. et al. Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J. Nanosci. Nanotechnol. 8, 2836–2857 (2008).

    Article 

    Google Scholar
     

  • Mottl, R. et al. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions. Science 336, 1570–1573 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Helson, V. et al. Density-wave ordering in a unitary Fermi gas with photon-mediated interactions. Nature 618, 716–720 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Vukics, A., Dombi, A., Fink, J. M. & Domokos, P. Finite-size scaling of the photon-blockade breakdown dissipative quantum phase transition. Quantum 3, 150 (2019).

    Article 

    Google Scholar
     

  • Di Terlizzi, I. et al. Variance sum rule for entropy production. Science 383, 971–976 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Su, L. et al. Fast single atom imaging for optical lattice arrays. Nat. Commun. 16, 1017 (2025).

    Article 

    Google Scholar
     

  • Luo, C. et al. Momentum-exchange interactions in a Bragg atom interferometer suppress Doppler dephasing. Science 384, 551–556 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Periwal, A. et al. Programmable interactions and emergent geometry in an array of atom clouds. Nature 600, 630–635 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kroeze, R. M. et al. Directly observing replica symmetry breaking in a vector quantum-optical spin glass. Preprint at https://doi.org/10.48550/arXiv.2311.04216 (2024).

  • Ye, M. et al. Universal quantum optimization with cold atoms in an optical cavity. Phys. Rev. Lett. 131, 103601 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Torggler, V., Aumann, P., Ritsch, H. & Lechner, W. A quantum N-queens solver. Quantum 3, 149 (2019).

    Article 

    Google Scholar
     

  • Anikeeva, G. et al. Number partitioning with Grover’s algorithm in central spin systems. PRX Quantum 2, 020319 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ilias, T., Yang, D., Huelga, S. F. & Plenio, M. B. Criticality-enhanced quantum sensing via continuous measurement. PRX Quantum 3, 010354 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Fernández-Lorenzo, S. & Porras, D. Quantum sensing close to a dissipative phase transition: symmetry breaking and criticality as metrological resources. Phys. Rev. A 96, 013817 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tsang, M. Quantum transition-edge detectors. Phys. Rev. A 88, 021801 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article 
    ADS 

    Google Scholar