• Christian, J. I. et al. Global distribution, trends, and drivers of flash drought occurrence. Nat. Commun. 12, 6330 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mohammadi, K., Jiang, Y. & Wang, G. Flash drought early warning based on the trajectory of solar-induced chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA 119, e2202767119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A. & Xiao, X. Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res. Lett. 15, 094078 (2020).

    Article 

    Google Scholar
     

  • Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).

    Article 

    Google Scholar
     

  • Nguyen, H. et al. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. 14, 064016 (2019).

    Article 

    Google Scholar
     

  • Wang, Y. & Yuan, X. High temperature accelerates onset speed of the 2022 unprecedented flash drought over the yangtze river basin. Geophys. Res. Lett. 50, e2023GL105375 (2023).

    Article 

    Google Scholar
     

  • Mo, K. C. & Lettenmaier, D. P. Heat wave flash droughts in decline. Geophys. Res. Lett. 42, 2823–2829 (2015).

    Article 

    Google Scholar
     

  • Fu, Z. et al. Global critical soil moisture thresholds of plant water stress. Nat. Commun. 15, 4826 (2024).

    Article 
    CAS 

    Google Scholar
     

  • García-García, A. et al. Soil heat extremes can outpace air temperature extremes. Nat. Clim. Change 13, 1237–1241 (2023).

    Article 

    Google Scholar
     

  • Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 11, 744–748 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Keenan, T. F. & Zhou, S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 5, 1490–1498 (2021).

    Article 

    Google Scholar
     

  • O, S. & Park, S. K. Global ecosystem responses to flash droughts are modulated by background climate and vegetation conditions. Commun. Earth Environ. 5, 88 (2024).

    Article 

    Google Scholar
     

  • Zhang, M. & Yuan, X. Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations. Hydrol. Earth Syst. Sci. 24, 5579–5593 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Noon, M. L. et al. Mapping the irrecoverable carbon in Earth’s ecosystems. Nat. Sustain. 5, 37–46 (2022).

    Article 

    Google Scholar
     

  • Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, K. et al. Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Nat. Commun. 13, 3469 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sippel, S. et al. Drought, heat, and the carbon cycle: a review. Curr. Clim. Change Rep. 4, 266–286 (2018).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 222, 165–182 (2019).

    Article 

    Google Scholar
     

  • Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Daru, B. H. & Rodriguez, J. Mass production of unvouchered records fails to represent global biodiversity patterns. Nat. Ecol. Evol. 7, 816–831 (2023).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Southern Hemisphere dominates recent decline in global water availability. Science 382, 579–584 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).

    Article 

    Google Scholar
     

  • Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).

    Article 

    Google Scholar
     

  • Vautard, R. et al. Heat extremes in Western Europe are increasing faster than simulated due to missed atmospheric circulation trends. Nat. Commun. 14, 6803 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kautz, L.-A. et al. Atmospheric blocking and weather extremes over the Euro-Atlantic sector—a review. Weather Clim. Dyn. 3, 305–336 (2022).

    Article 

    Google Scholar
     

  • Röthlisberger, M. & Papritz, L. Quantifying the physical processes leading to atmospheric hot extremes at a global scale. Nat. Geosci. 16, 210–216 (2023).

    Article 

    Google Scholar
     

  • Domeisen, D. I. V. et al. Prediction and projection of heatwaves. Nat. Rev. Earth Environ. 4, 36–50 (2023).

    Article 

    Google Scholar
     

  • Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D. G. & Salcedo-Sanz, S. Heat waves: physical understanding and scientific challenges. Rev. Geophys. 61, e2022RG000780 (2023).

    Article 

    Google Scholar
     

  • Reichle, R. H. et al. Assessment of MERRA-2 land surface hydrology estimates. J. Clim. 30, 2937–2960 (2017).

    Article 

    Google Scholar
     

  • Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article 

    Google Scholar
     

  • Qing, Y., Wang, S., Ancell, B. C. & Yang, Z.-L. Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity. Nat. Commun. 13, 1139 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, X. et al. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 10, 4661 (2019).

    Article 

    Google Scholar
     

  • Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).

    Article 

    Google Scholar
     

  • Mahecha, M. D. et al. Biodiversity loss and climate extremes—study the feedbacks. Nature 612, 30–32 (2022).

    Article 

    Google Scholar
     

  • Liu, D., Wang, T., Peñuelas, J. & Piao, S. Drought resistance enhanced by tree species diversity in global forests. Nat. Geosci. 15, 800–804 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, eabb7232 (2020).

    Article 

    Google Scholar
     

  • Kannenberg, S. A., Anderegg, W. R. L., Barnes, M. L., Dannenberg, M. P. & Knapp, A. K. Dominant role of soil moisture in mediating carbon and water fluxes in dryland ecosystems. Nat. Geosci. 17, 38–43 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Christian, J. I. et al. Flash drought: a state of the science review. WIREs Water 11, e1714 (2024).

    Article 

    Google Scholar
     

  • Christian, J. I. et al. The flash droughts across the south-central United States in 2022: drivers, predictability, and impacts. Weather Clim. Extrem. 46, 100730 (2024).

    Article 

    Google Scholar
     

  • Hirschi, M., Stradiotti, P., Crezee, B., Dorigo, W. & Seneviratne, S. I. Potential of long-term satellite observations and reanalysis products for characterising soil drying: trends and drought events. Hydrol. Earth Syst. Sci. 29, 397–425 (2025).

    Article 

    Google Scholar
     

  • Otkin, J. A. et al. Development of a flash drought intensity index. Atmosphere 12, 741 (2021).

    Article 

    Google Scholar
     

  • Mukherjee, S. & Mishra, A. K. A multivariate flash drought indicator for identifying global hotspots and associated climate controls. Geophys. Res. Lett. 49, e2021GL096804 (2022).

    Article 

    Google Scholar
     

  • Otkin, J. A. et al. Multivariate evaluation of flash drought across the United States. Water Resour. Res. 60, e2024WR037333 (2024).

    Article 

    Google Scholar
     

  • Yin, X. et al. Spatiotemporal responses of net primary productivity of alpine ecosystems to flash drought: the Qilian Mountains. J. Hydrol. 624, 129865 (2023).

    Article 

    Google Scholar
     

  • Gray, K. & Gills, B. K. South–South cooperation and the rise of the Global South. Third World Q. 37, 557–574 (2016).

    Article 

    Google Scholar
     

  • Kaufmann, D., Kraay, A. & Mastruzzi, M. The worldwide governance indicators: methodology and analytical issues. Hague J. Rule Law 3, 220–246 (2011).

    Article 

    Google Scholar
     

  • Bird, M. I. et al. Late Pleistocene emergence of an anthropogenic fire regime in Australia’s tropical savannahs. Nat. Geosci. 17, 233–240 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lipsett-Moore, G. J., Wolff, N. H. & Game, E. T. Emissions mitigation opportunities for savanna countries from early dry season fire management. Nat. Commun. 9, 2247 (2018).

    Article 

    Google Scholar
     

  • Bell, B. et al. The ERA5 global reanalysis: preliminary extension to 1950. Q. J. R. Meteorol. Soc. 147, 4186–4227 (2021).

    Article 

    Google Scholar
     

  • Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).

    Article 

    Google Scholar
     

  • Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).

    Article 

    Google Scholar
     

  • Jiang, S. et al. Utility of integrated IMERG precipitation and GLEAM potential evapotranspiration products for drought monitoring over mainland China. Atmospheric Res. 247, 105141 (2021).

    Article 

    Google Scholar
     

  • Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data 9, 409 (2022).

    Article 

    Google Scholar
     

  • Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center. USGS https://doi.org/10.5067/MODIS/MCD12Q1.006 (2019).

  • Chapman, M. et al. Biodiversity monitoring for a just planetary future. Science 383, 34–36 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Koutsoyiannis, D. Clausius–Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice. Eur. J. Phys. 33, 295 (2012).

    Article 

    Google Scholar
     

  • Gentine, P., Entekhabi, D., Chehbouni, A., Boulet, G. & Duchemin, B. Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteorol. 143, 13–29 (2007).

    Article 

    Google Scholar
     

  • Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187–191 (2023).

    Article 
    CAS 

    Google Scholar
     

  • O, S. & Park, S. K. Flash drought drives rapid vegetation stress in arid regions in Europe. Environ. Res. Lett. 18, 014028 (2023).

    Article 

    Google Scholar
     

  • Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    Article 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • Center for International Earth Science Information Network. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 (NASA Socioeconomic Data and Applications Center, 2018).

  • Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Global Agricultural Lands: Pastures, 2000 (NASA Socioeconomic Data and Applications Center, 2010).

  • Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Global Agricultural Lands: Croplands, 2000 (NASA Socioeconomic Data and Applications Center, 2010).

  • Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. Figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).

  • Daru, B. H. & Rodriguez, J. Mass production of unvouchered records fail to represent global biodiversity patterns in the Anthropocene – code and data. Zenodo https://doi.org/10.5281/zenodo.6834577 (2022).

  • Gu, L. Main R code and figure data for Flash drought impacts on global ecosystems amplified by extreme heat. Zenodo https://doi.org/10.5281/zenodo.14849692 (2025).