• Spraggs, G., Peaver, L., Jones, P. & Ede, P. Re-construction of historic drought in the Anglian Region (UK) over the period 1798–2010 and the implications for water resources and drought management. J. Hydrol. 526, 231–252 (2015).

    Article 

    Google Scholar
     

  • Turner, S. et al. The 2018/2019 drought in the UK: a hydrological appraisal. Weather 76, 248–253 (2021).

    Article 

    Google Scholar
     

  • Lane, R.A. & Kay, A.L. Climate change impact on the magnitude and timing of hydrological extremes across Great Britain. Front. Water 3, https://doi.org/10.3389/frwa.2021.684982.

  • Parry, S. et al. Divergent future drought projections in UK river flows and groundwater levels. Hydrol. Earth Syst. Sci. 28, 417–440 (2024).

    Article 

    Google Scholar
     

  • Tanguy, M. et al. How will climate change affect the spatial coherence of streamflow and groundwater droughts in Great Britain? Environ. Res. Lett.18, 64048 (2023).

    Article 

    Google Scholar
     

  • Counsell, C.J.A. End-to-End Ensemble Modelling for Water Resources Planning Under Uncertainty. PhD thesis, the Open Univ. https://doi.org/10.21954/ou.ro.0000dcf7 2018.

  • De Niel J., Van Uytven, E. & Willems. Uncertainty analysis of climate change impact on river flow extremes based on a large multi-model ensemble. Water Res. Manag. 33, 4319–4333 (2019).

  • National Infrastructure Commission, ‘Preparing for a drier future: England’s water infrastructure needs’, 2018. accessed 30 October 2023. [Online]. Available: https://nic.org.uk/app/uploads/NIC-Preparing-for-a-Drier-Future-26-April-2018.pdf.

  • Parry, S., Hannaford, J., Lloyd-Hughes, B. & Prudhomme, C. Multi-year droughts in Europe: analysis of development and causes. Hydrol. Res. 43, 689–706 (2012).

    Article 

    Google Scholar
     

  • West, H. Quinn, N. & Horswell, M. The influence of the North Atlantic oscillation and East Atlantic pattern on drought in british catchments. Front. Environ. Sci. 10, https://doi.org/10.3389/fenvs.2022.754597 (2022).

  • Rust, W., Bloomfield, J. P., Cuthbert, M., Corstanje, R. & Holman, I. The importance of non-stationary multiannual periodicities in the North Atlantic Oscillation index for forecasting water resource drought. Hydrol. Earth Syst. Sci. 26, 2449–2467 (2022).

    Article 

    Google Scholar
     

  • Rust, W., Bloomfield, J. P. & Holman, I. Long-range hydrological drought forecasting using multi-year cycles in the North Atlantic Oscillation. J. Hydrol. 641, 131831 (2024).

    Article 

    Google Scholar
     

  • Dunstone, N. et al. Skilful Real-time seasonal forecasts of the dry Northern European summer 2018. Geophys. Res. Lett. 46, 12368–12376 (2019).

    Article 

    Google Scholar
     

  • Sutton, R. T. & Dong, B. Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci. 5, 788–792 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Czaja, A. & Frankignoul, C. Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Clim. 15, 606–623 (2002).

    Article 

    Google Scholar
     

  • Cassou, C., Deser, C., Terray, L., Hurrell, J. W. & Drévillon, M. Summer sea surface temperature conditions in the North Atlantic and their Impact upon the atmospheric circulation in early winter. J. Clim. 17, 3349–3363 (2004).

    Article 

    Google Scholar
     

  • Gastineau, G. & Frankignoul, C. Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Clim. 28, 1396–1416 (2015).

    Article 

    Google Scholar
     

  • Kingston, D. G., Fleig, A. K., Tallaksen, L. M. & Hannah, D. M. Ocean–atmosphere forcing of summer streamflow drought in Great Britain. J. Hydrometeorol. 14, 331–344 (2013).

    Article 

    Google Scholar
     

  • Hu, Z.-Z. & Huang, B. Air–sea coupling in the North Atlantic during summer. Clim. Dyn. 26, 441–457 (2006).

    Article 

    Google Scholar
     

  • Oltmanns, M. et al. European summer weather linked to North Atlantic freshwater anomalies in preceding years. Weather Clim. Dyn. 5, 109–132 (2024).

    Article 

    Google Scholar
     

  • Prudhomme, C. et al. Hydrological outlook UK: an operational streamflow and groundwater level forecasting system at monthly to seasonal time scales. Hydrol. Sci. J. 62, 2753–2768 (2017).

    Article 

    Google Scholar
     

  • Harrigan, S., Prudhomme, C., Parry, S., Smith, K. & Tanguy, M. Benchmarking ensemble streamflow prediction skill in the UK. Hydrol. Earth Syst. Sci. 22, 2023–2039 (2018).

    Article 

    Google Scholar
     

  • Scaife, A. A. et al. Skillful long-range prediction of European and North American winters. Geophys. Res. Lett. 41, 2514–2519 (2014).

    Article 

    Google Scholar
     

  • Svensson, C. et al. Long-range forecasts of UK winter hydrology. Environ. Res. Lett. 10, 064006 (2015).

    Article 

    Google Scholar
     

  • Dunstone, N. et al. Skilful seasonal predictions of summer European rainfall. Geophys. Res. Lett. 45, 3246–3254 (2018).

    Article 

    Google Scholar
     

  • Committee on Climate Change, ‘Committee on Climate Change – UK Climate Change Risk Assessment 2017 – Synthesis Report’, 2016, accessed 18 April 2024. [Online]. Available: https://www.theccc.org.uk/wp-content/uploads/2016/07/UK-CCRA-2017-Synthesis-Report-Committee-on-Climate-Change.pdf.

  • Counsell, C. & Durant, M. Water Supply: Observed and Projected – Review of the state of research on drought. in Review of the research and scientific understanding of drought, 2023, 548–600, accessed 20 May 2024. [Online]. Available: https://assets.publishing.service.gov.uk/media/656f10920f12ef07a53e0229/Annex_to_the_review_of_the_research_and_scientific_understanding_of_drought.pdf.

  • Dawkins, L. C., Osborne, J. M., Economou, T., Darch, G. J. C. & Stoner, O. R. The advanced meteorology explorer: a novel stochastic, gridded daily rainfall generator. J. Hydrol. 607, 127478 (2022).

    Article 

    Google Scholar
     

  • Brunner, M. I., Swain, D. L., Gilleland, E. & Wood, A. W. Increasing importance of temperature as a contributor to the spatial extent of streamflow drought. Environ. Res. Lett. 16, 024038 (2021).

    Article 

    Google Scholar
     

  • Ahmadalipour, A., Moradkhani, H. & Demirel, M. C. A comparative assessment of projected meteorological and hydrological droughts: elucidating the role of temperature. J. Hydrol. 553, 785–797 (2017).

    Article 

    Google Scholar
     

  • Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).

    Article 

    Google Scholar
     

  • Sutanto, S. J., Syaehuddin, W. A. & de Graaf, I. Hydrological drought forecasts using precipitation data depend on catchment properties and human activities. Commun. Earth Environ. 5, 118 (2024).

    Article 

    Google Scholar
     

  • Kumar, A. et al. Cascading droughts: exploring global propagation of meteorological to hydrological droughts (1971–2001). Sci. Total Environ. 979, 179486 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hannaford, J., Lloyd-Hughes, B., Keef, C., Parry, S. & Prudhomme, C. Examining the large-scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrol. Process 25, 1146–1162 (2011).

    Article 

    Google Scholar
     

  • Van Loon, A. F. Hydrological drought explained. WIREs Water 2, 359–392 (2015).

    Article 

    Google Scholar
     

  • van Lanen, H.A.J., Fendeková, M. Kupczyk, E. Kasprzyk, A. & Pokojski, W. Flow generating processes. In Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater Vol. 48 (eds Tallaksen, L.M. & van Lanen, H.A.J.) 53–96 (Elsevier, 2004).

  • Barker, L. J., Hannaford, J., Chiverton, A. & Svensson, C. From meteorological to hydrological drought using standardised indicators. Hydrol. Earth Syst. Sci. 20, 2483–2505 (2016).

    Article 

    Google Scholar
     

  • Laizé, C. L. R. & Hannah, D. M. Modification of climate–river flow associations by basin properties. J. Hydrol. 389, 186–204 (2010).

    Article 

    Google Scholar
     

  • Lavers, D., Prudhomme, C. & Hannah, D. M. Large-scale climate, precipitation and British river flows: identifying hydroclimatological connections and dynamics. J. Hydrol. 395, 242–255 (2010).

    Article 

    Google Scholar
     

  • Fleig, A. K., Tallaksen, L. M., Hisdal, H. & Hannah, D. M. Regional hydrological drought in north-western Europe: linking a new regional drought area index with weather types. Hydrol. Process 25, 1163–1179 (2011).

    Article 

    Google Scholar
     

  • Rahmani, F. & Fattahi, M. H. A multifractal cross-correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature. Nat. Hazards 109, 2197–2219 (2021).

    Article 

    Google Scholar
     

  • Pozzi, W. et al. Toward global drought early warning capability: expanding international cooperation for the development of a framework for monitoring and forecasting. Bull. Am. Meteorol. Soc. 94, 776–785 (2013).

    Article 

    Google Scholar
     

  • Hao, Z., Singh, V. P. & Xia, Y. Seasonal drought prediction: advances, challenges, and future prospects. Rev.Geophys. 56, 108–141 (2018).

    Article 

    Google Scholar
     

  • Sutanto, S. J., Wetterhall, F. & Van Lanen, H. A. J. Hydrological drought forecasts outperform meteorological drought forecasts. Environ. Res. Lett. 15, 084010 (2020).

    Article 

    Google Scholar
     

  • Scaife, A. A. & Smith, D. A signal-to-noise paradox in climate science. NPJ Clim. Atmos. Sci. 1, 28 (2018).

    Article 

    Google Scholar
     

  • Weisheimer, A. et al. The signal-to-noise paradox in climate forecasts: revisiting our understanding and identifying future priorities. Bull. Am. Meteorol. Soc. 105, E651–E659 (2024).

    Article 

    Google Scholar
     

  • Menary, M. B. et al. Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys. Res. Lett. 42, 5926–5934 (2015).

    Article 

    Google Scholar
     

  • Sgubin, G., Swingedouw, D., Drijfhout, S., Mary, Y. & Bennabi, A. Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 8, 14375 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mecking, J. V., Drijfhout, S. S., Jackson, L. C. & Andrews, M. B. The effect of model bias on Atlantic freshwater transport and implications for AMOC bi-stability. Tellus A Dyn. Meteorol. Oceanogr. 69, 1299910 (2017).

    Article 

    Google Scholar
     

  • Wu, Y., Park, T., Park, W. & Latif, M. North Atlantic climate model bias influence on multiyear predictability. Earth Planet. Sci. Lett. 481, 171–176 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Harvey, B., Hawkins, E. & Sutton, R. Storylines for future changes of the North Atlantic jet and associated impacts on the UK. Int. J. Climatol. 43, 4424–4441 (2023).

  • Marshall, J., Johnson, H. & Goodman, J. A study of the interaction of the North Atlantic oscillation with ocean circulation. J. Clim. 14, 1399–1421 (2001).

    Article 

    Google Scholar
     

  • Svensson, C. & Prudhomme, C. Prediction of British summer river flows using winter predictors. Theor. Appl. Climatol. 82, 1–15 (2005).

    Article 

    Google Scholar
     

  • Chiverton, A. et al. Which catchment characteristics control the temporal dependence structure of daily river flows?. Hydrol. Process 29, 1353–1369 (2015).

    Article 

    Google Scholar
     

  • Noguera, I., Hannaford, J., & Tanguy, M., Distribution, trends and drivers of flash droughts in the United Kingdom. https://doi.org/10.5194/egusphere-2024-1969 (2024).

  • Marsh, T., Cole, G. & Wilby, R. Major droughts in England and Wales, 1800-2006. Weather 62, 87–93 (2007).

    Article 

    Google Scholar
     

  • Tanguy, M. et al. Regional differences in spatiotemporal drought characteristics in Great Britain. Front. Environ. Sci. 9, 639649 (2021).

    Article 

    Google Scholar
     

  • Institute of Hydrology and British Geological Survey, ‘Hydrological data United Kingdom 1995 Yearbook: an account of rainfall, river flows, groundwater levels and river water quality January to December 1995’, 1995, accessed 30 June 2024. [Online]. Available: https://nora.nerc.ac.uk/id/eprint/6946.

  • UKCEH, ‘The UK faced an extremely hot and dry summer in 1995 which lead to rapidly declining river and reservoir levels and water supply disruption’, accessed 30 January 2024. [Online]. Available: https://www.ceh.ac.uk/our-science/projects/tanker-drought-1995-1998.

  • Chan, W. C. H. et al. Added value of seasonal hindcasts for UK hydrological drought outlook. Nat Hazards Earth Syst. Sci. Discuss. 2023, 1–21 (2023).


    Google Scholar
     

  • Barker, L. J. et al. An appraisal of the severity of the 2022 drought and its impacts. Weather 79, 208–219 (2024).

    Article 

    Google Scholar
     

  • Saunders, M.A. & Qian, B. Seasonal predictability of the winter NAO from north Atlantic sea surface temperatures’, Geophys. Res. Lett. 29, https://doi.org/10.1029/2002GL014952 (2002).

  • Dickson, R. R., Meincke, J., Malmberg, S.-A. & Lee, A. J. The “great salinity anomaly” in the Northern North Atlantic 1968–1982. Prog. Oceanogr. 20, 103–151 (1988).

    Article 

    Google Scholar
     

  • Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q. J. R. Meteorol. Soc. 136, 856–868 (2010).

    Article 

    Google Scholar
     

  • Kingston, D. G., Stagge, J. H., Tallaksen, L. M. & Hannah, D. M. European-scale drought: understanding connections between atmospheric circulation and meteorological drought indices. J. Clim. 28, 505–516 (2015).

    Article 

    Google Scholar
     

  • Peng, S., Robinson, W. A. & Li, S. Mechanisms for the NAO Responses to the North Atlantic SST Tripole. J. Clim. 16, 1987–2004 (2003).

    Article 

    Google Scholar
     

  • Zhao, J. & Johns, W. Wind-forced interannual variability of the Atlantic meridional overturning circulation at 26.5°N. J. Geophys. Res. Oceans 119, 2403–2419 (2014).

    Article 

    Google Scholar
     

  • Oltmanns, M., Karstensen, J., Moore, G. W. K. & Josey, S. A. Rapid cooling and increased storminess triggered by freshwater in the North Atlantic. Geophys. Res. Lett. 47, e2020GL087207 (2020).

    Article 

    Google Scholar
     

  • Eady, E. T. Long waves and cyclone waves. Tellus 1, 33–52 (1949).

    Article 

    Google Scholar
     

  • Ossó, A., Sutton, R., Shaffrey, L. & Dong, B. Observational evidence of European summer weather patterns predictable from spring. Proc. Natl. Acad. Sci.115, 59–63 (2018).

    Article 

    Google Scholar
     

  • Simpson, I., Hanna, E., Baker, L., Sun, Y. & Wei, H. North Atlantic atmospheric circulation indices: Links with summer and winter temperature and precipitation in north-west Europe, including persistence and variability. Int. J. Climatol. 44, 902–922 (2024).

    Article 

    Google Scholar
     

  • Blackport, R. & Screen, J. A. Observed statistical connections overestimate the causal effects of Arctic Sea ice changes on midlatitude winter climate. J. Clim. 34, 3021–3038 (2021).

    Article 

    Google Scholar
     

  • Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim. Change 151, 555–571 (2018).

    Article 

    Google Scholar
     

  • Dikshit, A., Pradhan, B., Assiri, M. E., Almazroui, M. & Park, H.-J. Solving transparency in drought forecasting using attention models. Sci. Total Environ. 837, 155856 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Deo, R. C., Kisi, O. & Singh, V. P. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmos. Res. 184, 149–175 (2017).

    Article 

    Google Scholar
     

  • McKee, T.B., Doesken, N.J., Kleist, J. & others. The relationship of drought frequency and duration to time scales. In Proc 8th Conference on Applied Climatology179–183 (Scientific Research, 1993).

  • Vicente-Serrano, S. M. et al. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 16, 1–27 (2012).

    Article 

    Google Scholar
     

  • Tanguy, M., Fry, M., Svensson, C. & Hannaford, J. Historic gridded standardised precipitation index for the United Kingdom 1862-2015 (generated using gamma distribution with standard period 1961-2010) v4’, 2017. https://doi.org/10.5285/233090b2-1d14-4eb9-9f9c-3923ea2350ff.

  • Barker, L.J. et al. Dynamic high resolution hydrological status monitoring in real-time: the UK water resources portal. Front. Environ. Sci. 10, https://doi.org/10.3389/fenvs.2022.752201 (2022).

  • Rayner, N.A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, https://doi.org/10.1029/2002JD002670 (2003).

  • Buongiorno Nardelli, B., Droghei, R. & Santoleri, R. Multi-dimensional interpolation of SMOS sea surface salinity with surface temperature and in situ salinity data. Remote Sens. Environ. 180, 392–402 (2016).

    Article 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Hurrell, J. W., Kushnir, Y., Ottersen, G. & Visbeck, M. The North Atlantic Oscillation: Climatic Significance and Environmental Impact Vol. 134. Washington, D. C.: American Geophysical Union, 2003. https://doi.org/10.1029/GM134.

  • Svensson, C. & Hannaford, J. Oceanic conditions associated with Euro-Atlantic high pressure and UK drought. Environ. Res. Commun. 1, 101001 (2019).

    Article 

    Google Scholar
     

  • Kostov, Y. et al. Distinct sources of interannual subtropical and subpolar Atlantic overturning variability. Nat. Geosci. 14, 491–495 (2021).

    Article 
    CAS 

    Google Scholar