• Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellessa, J. et al. Materials for excitons–polaritons: Exploiting the diversity of semiconductors. MRS Bull. 49, 932–947 (2024).

    Article 

    Google Scholar
     

  • Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bloch, J., Carusotto, I. & Wouters, M. Non-equilibrium Bose–Einstein condensation in photonic systems. Nat. Rev. Phys. 4, 470–488 (2022).

    Article 

    Google Scholar
     

  • Kavokin, A. et al. Polariton condensates for classical and quantum computing. Nat. Rev. Phys. 4, 435–451 (2022).

    Article 

    Google Scholar
     

  • Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liew, T. C. H. The future of quantum in polariton systems: opinion. Opt. Mater. Express 13, 1938–1946 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater. 18, 219–222 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).

    Article 

    Google Scholar
     

  • Le Thomas, N. et al. Cavity QED with semiconductor nanocrystals. Nano Lett. 6, 557–561 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Flatten, L. C. et al. Strong exciton–photon coupling with colloidal nanoplatelets in an open microcavity. Nano Lett. 16, 7137–7141 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Winkler, J. M. et al. Room-temperature strong coupling of CdSe nanoplatelets and plasmonic hole arrays. Nano Lett. 19, 108–115 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, L. et al. Molecular polaritons generated from strong coupling between CdSe nanoplatelets and a dielectric optical cavity. J. Phys. Chem. Lett. 12, 5030–5038 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Ultralow threshold room temperature polariton condensation in colloidal CdSe/CdS Core/shell nanoplatelets. Adv. Sci. 9, 2200395 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, F. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11, 10373–10383 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rainò, G. et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 13, 2587 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, C. et al. Single-photon superradiance in individual caesium lead halide quantum dots. Nature 626, 535–541 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker, M. A. et al. Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals. Nano Lett. 18, 7546–7551 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, C. et al. Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Lett. 22, 3751–3760 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaplan, A. E. K. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photon. 17, 775–780 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fakharuddin, A. et al. Perovskite light-emitting diodes. Nat. Electron. 5, 203–216 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ling, X., Yuan, J. & Ma, W. The rise of colloidal lead halide perovskite quantum dot solar cells. Acc. Mater. Res. 3, 866–878 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Huang, C.-Y. et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics 4, 2281–2289 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tian, J. et al. Perovskite quantum dot one-dimensional topological laser. Nat. Commun. 14, 1433 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, K. et al. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun. 13, 7388 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, R. et al. Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nat. Mater. 21, 761–766 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, K. et al. Topological valley Hall polariton condensation. Nat. Nanotechnol. 19, 1283–1289 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamarat, P. et al. Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites. Nat. Commun. 14, 229 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, C. et al. Many-body correlations and exciton complexes in CsPbBr quantum dots. Adv. Mater. 35, 2208354 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Coleman, J. J., Young, J. D. & Garg, A. Semiconductor quantum dot lasers: a tutorial. J. Light. Technol. 29, 499–510 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Akkerman, Q. A. et al. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 377, 1406–1412 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bujalance, C. et al. Strong light–matter coupling in lead halide perovskite quantum dot solids. ACS Nano 18, 4922–4931 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, D. et al. Observation of transition from superfluorescence to polariton condensation in CsPbBr3 quantum dots film. Light Sci. Appl. 13, 34 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boehme, S. C. et al. Strongly Confined CsPbBr3 quantum dots as quantum emitters and building blocks for rhombic superlattices. ACS Nano 17, 2089–2100 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krieg, F. et al. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies. ACS Cent. Sci. 7, 135–144 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urbonas, D., Stöferle, T., Scafirimuto, F., Scherf, U. & Mahrt, R. F. Zero-dimensional organic exciton–polaritons in tunable coupled gaussian defect microcavities at room temperature. ACS Photonics 3, 1542–1545 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ding, F., Stöferle, T., Mai, L., Knoll, A. & Mahrt, R. F. Vertical microcavities with high Q and strong lateral mode confinement. Phys. Rev. B 87, 161116 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Baas, A. et al. Synchronized and desynchronized phases of exciton-polariton condensates in the presence of disorder. Phys. Rev. Lett. 100, 170401 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwennicke, K., Giebink, N. C. & Yuen-Zhou, J. Extracting accurate light–matter couplings from disordered polaritons. Nanophotonics 13, 2469–2478 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M. & Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 71, 1591–1639 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scafirimuto, F., Urbonas, D., Scherf, U., Mahrt, R. F. & Stöferle, T. Room-temperature exciton-polariton condensation in a tunable zero-dimensional microcavity. ACS Photonics 5, 85–89 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sun, Y. et al. Direct measurement of polariton–polariton interaction strength. Nat. Phys. 13, 870–875 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yagafarov, T. et al. Mechanisms of blueshifts in organic polariton condensates. Commun. Phys. 3, 1–10 (2020).

    Article 

    Google Scholar
     

  • Haug, H., Doan, T. D., Cao, H. T. & Thoai, D. B. T. Temporal first- and second-order correlations in a polariton condensate. Phys. Rev. B 85, 205310 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Daskalakis, K. S., Maier, S. A. & Kéna-Cohen, S. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett. 115, 035301 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Orfanakis, K., Tzortzakakis, A. F., Petrosyan, D., Savvidis, P. G. & Ohadi, H. Ultralong temporal coherence in optically trapped exciton-polariton condensates. Phys. Rev. B 103, 235313 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Love, A. P. D. et al. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101, 067404 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Whittaker, D. M. & Eastham, P. R. Coherence properties of the microcavity polariton condensate. EPL 87, 27002 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Scafirimuto, F. et al. Tunable exciton–polariton condensation in a two-dimensional Lieb lattice at room temperature. Commun. Phys. 4, 1–6 (2021).

    Article 

    Google Scholar
     

  • Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reinhard, A. et al. Strongly correlated photons on a chip. Nat. Photon. 6, 93–96 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Forouhi, A. R. & Bloomer, I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys. Rev. B 34, 7018–7026 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Georgakilas, I. Data corresponding to the publication ‘Room-temperature cavity exciton-polariton condensation in perovskite quantum dots’. Zenodo https://doi.org/10.5281/zenodo.15367737 (2025).