Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).
Bellessa, J. et al. Materials for excitons–polaritons: Exploiting the diversity of semiconductors. MRS Bull. 49, 932–947 (2024).
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).
Bloch, J., Carusotto, I. & Wouters, M. Non-equilibrium Bose–Einstein condensation in photonic systems. Nat. Rev. Phys. 4, 470–488 (2022).
Kavokin, A. et al. Polariton condensates for classical and quantum computing. Nat. Rev. Phys. 4, 435–451 (2022).
Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).
Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).
Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).
Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).
Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).
Liew, T. C. H. The future of quantum in polariton systems: opinion. Opt. Mater. Express 13, 1938–1946 (2023).
Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).
Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater. 18, 219–222 (2019).
Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).
Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).
Le Thomas, N. et al. Cavity QED with semiconductor nanocrystals. Nano Lett. 6, 557–561 (2006).
Flatten, L. C. et al. Strong exciton–photon coupling with colloidal nanoplatelets in an open microcavity. Nano Lett. 16, 7137–7141 (2016).
Winkler, J. M. et al. Room-temperature strong coupling of CdSe nanoplatelets and plasmonic hole arrays. Nano Lett. 19, 108–115 (2019).
Qiu, L. et al. Molecular polaritons generated from strong coupling between CdSe nanoplatelets and a dielectric optical cavity. J. Phys. Chem. Lett. 12, 5030–5038 (2021).
Yang, H. et al. Ultralow threshold room temperature polariton condensation in colloidal CdSe/CdS Core/shell nanoplatelets. Adv. Sci. 9, 2200395 (2022).
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).
Liu, F. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11, 10373–10383 (2017).
Rainò, G. et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 13, 2587 (2022).
Zhu, C. et al. Single-photon superradiance in individual caesium lead halide quantum dots. Nature 626, 535–541 (2024).
Becker, M. A. et al. Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals. Nano Lett. 18, 7546–7551 (2018).
Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).
Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).
Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).
Zhu, C. et al. Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Lett. 22, 3751–3760 (2022).
Kaplan, A. E. K. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photon. 17, 775–780 (2023).
Fakharuddin, A. et al. Perovskite light-emitting diodes. Nat. Electron. 5, 203–216 (2022).
Ling, X., Yuan, J. & Ma, W. The rise of colloidal lead halide perovskite quantum dot solar cells. Acc. Mater. Res. 3, 866–878 (2022).
Huang, C.-Y. et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics 4, 2281–2289 (2017).
Tian, J. et al. Perovskite quantum dot one-dimensional topological laser. Nat. Commun. 14, 1433 (2023).
Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).
Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).
Peng, K. et al. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun. 13, 7388 (2022).
Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).
Tao, R. et al. Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nat. Mater. 21, 761–766 (2022).
Peng, K. et al. Topological valley Hall polariton condensation. Nat. Nanotechnol. 19, 1283–1289 (2024).
Tamarat, P. et al. Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites. Nat. Commun. 14, 229 (2023).
Zhu, C. et al. Many-body correlations and exciton complexes in CsPbBr quantum dots. Adv. Mater. 35, 2208354 (2023).
Coleman, J. J., Young, J. D. & Garg, A. Semiconductor quantum dot lasers: a tutorial. J. Light. Technol. 29, 499–510 (2011).
Akkerman, Q. A. et al. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 377, 1406–1412 (2022).
Bujalance, C. et al. Strong light–matter coupling in lead halide perovskite quantum dot solids. ACS Nano 18, 4922–4931 (2024).
Mao, D. et al. Observation of transition from superfluorescence to polariton condensation in CsPbBr3 quantum dots film. Light Sci. Appl. 13, 34 (2024).
Boehme, S. C. et al. Strongly Confined CsPbBr3 quantum dots as quantum emitters and building blocks for rhombic superlattices. ACS Nano 17, 2089–2100 (2023).
Krieg, F. et al. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies. ACS Cent. Sci. 7, 135–144 (2021).
Urbonas, D., Stöferle, T., Scafirimuto, F., Scherf, U. & Mahrt, R. F. Zero-dimensional organic exciton–polaritons in tunable coupled gaussian defect microcavities at room temperature. ACS Photonics 3, 1542–1545 (2016).
Ding, F., Stöferle, T., Mai, L., Knoll, A. & Mahrt, R. F. Vertical microcavities with high Q and strong lateral mode confinement. Phys. Rev. B 87, 161116 (2013).
Baas, A. et al. Synchronized and desynchronized phases of exciton-polariton condensates in the presence of disorder. Phys. Rev. Lett. 100, 170401 (2008).
Schwennicke, K., Giebink, N. C. & Yuen-Zhou, J. Extracting accurate light–matter couplings from disordered polaritons. Nanophotonics 13, 2469–2478 (2024).
Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M. & Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 71, 1591–1639 (1999).
Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).
Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).
Scafirimuto, F., Urbonas, D., Scherf, U., Mahrt, R. F. & Stöferle, T. Room-temperature exciton-polariton condensation in a tunable zero-dimensional microcavity. ACS Photonics 5, 85–89 (2018).
Sun, Y. et al. Direct measurement of polariton–polariton interaction strength. Nat. Phys. 13, 870–875 (2017).
Yagafarov, T. et al. Mechanisms of blueshifts in organic polariton condensates. Commun. Phys. 3, 1–10 (2020).
Haug, H., Doan, T. D., Cao, H. T. & Thoai, D. B. T. Temporal first- and second-order correlations in a polariton condensate. Phys. Rev. B 85, 205310 (2012).
Daskalakis, K. S., Maier, S. A. & Kéna-Cohen, S. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett. 115, 035301 (2015).
Orfanakis, K., Tzortzakakis, A. F., Petrosyan, D., Savvidis, P. G. & Ohadi, H. Ultralong temporal coherence in optically trapped exciton-polariton condensates. Phys. Rev. B 103, 235313 (2021).
Love, A. P. D. et al. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101, 067404 (2008).
Whittaker, D. M. & Eastham, P. R. Coherence properties of the microcavity polariton condensate. EPL 87, 27002 (2009).
Scafirimuto, F. et al. Tunable exciton–polariton condensation in a two-dimensional Lieb lattice at room temperature. Commun. Phys. 4, 1–6 (2021).
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
Reinhard, A. et al. Strongly correlated photons on a chip. Nat. Photon. 6, 93–96 (2012).
Forouhi, A. R. & Bloomer, I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys. Rev. B 34, 7018–7026 (1986).
Georgakilas, I. Data corresponding to the publication ‘Room-temperature cavity exciton-polariton condensation in perovskite quantum dots’. Zenodo https://doi.org/10.5281/zenodo.15367737 (2025).