• Cheung R, Insigne KD, Yao D, Burghard CP, Wang J, Hsiao Y-HE, et al. A multiplexed assay for exon recognition reveals that an unappreciated fraction of rare genetic variants cause large-effect splicing disruptions. Mol Cell. 2019;73:183–94.e8.

    Article 
    CAS 

    Google Scholar
     

  • Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.e24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soemedi R, Cygan KJ, Rhine CL, Wang J, Bulacan C, Yang J, et al. Pathogenic variants that alter protein code often disrupt splicing. Nat Genet. 2017;49:848–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leman R, Parfait B, Vidaud D, Girodon E, Pacot L, Le Gac G, et al. SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing. Hum Mutat. 2022;43:2308–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Houdayer C, Caux-Moncoutier V, Krieger S, Barrois M, Bonnet F, Bourdon V, et al. Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants. Hum Mutat. 2012;33:1228–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leman R, Gaildrat P, Le Gac G, Ka C, Fichou Y, Audrezet M-P, et al. Novel diagnostic tool for prediction of variant spliceogenicity derived from a set of 395 combined in silico/in vitro studies: an international collaborative effort. Nucleic Acids Res. 2018;46:11656–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan M, Cornelis SS, Del Pozo-Valero M, Whelan L, Runhart EH, Mishra K, et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet Med. 2020;22:1235–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaché C, Baux D, Bianchi J, Baudoin C, Faugère V, Francannet C, et al. Reclassification of a TMC1 synonymous substitution as a variant disrupting splicing regulatory elements associated with recessive hearing loss. Eur J Hum Genet. 2022;30:34–41.

    Article 
    PubMed 

    Google Scholar
     

  • Bouvet D, Blondel A, De Sainte Agathe J-M, Leroy G, Saint-Martin C, Bellanné-Chantelot C. Evaluation in Monogenic Diabetes of the Impact of GCK, HNF1A, and HNF4A Variants on splicing through the combined use of in silico tools and minigene assays. Human Mutat. 2023;2023:1–13.

    Article 

    Google Scholar
     

  • de Sainte Agathe JM, Filser M, Isidor B, Besnard T, Gueguen P, Perrin A, et al. SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation. Hum Genom. 2023;17:7.

    Article 

    Google Scholar
     

  • Carrard J, Lejeune F. Nonsense-mediated mRNA decay, a simplified view of a complex mechanism. BMB Rep. 2023;56:625–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andreutti-Zaugg C, Scott RJ, Iggo R. Inhibition of nonsense-mediated messenger RNA decay in clinical samples facilitates detection of human MSH2 mutations with an in vivo fusion protein assay and conventional techniques. Cancer Res. 1997;57:3288–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Nilsen TW. The fundamentals of RNA purification. Cold Spring Harb Protoc. 2013;2013:618–24.

    PubMed 

    Google Scholar
     

  • Li S, Liu J, Zhao M, Su Y, Cong B, Wang Z. RNA quality score evaluation: A preliminary study of RNA integrity number (RIN) and RNA integrity and quality number (RNA IQ). Forensic Sci Int. 2024;357:111976.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bournazos AM, Riley LG, Bommireddipalli S, Ades L, Akesson LS, Al-Shinnag M, et al. Standardized practices for RNA diagnostics using clinically accessible specimens reclassifies 75% of putative splicing variants. Genetics Med. 2022;24:130–145.

    Article 
    CAS 

    Google Scholar
     

  • Aicher JK, Jewell P, Vaquero-Garcia J, Barash Y, Bhoj EJ. Mapping RNA splicing variations in clinically accessible and nonaccessible tissues to facilitate Mendelian disease diagnosis using RNA-seq. Genetics Med. 2020;22:1181–90.

    Article 

    Google Scholar
     

  • Lord J, Oquendo CJ, Wai HA, Douglas AGL, Bunyan DJ, Wang Y, et al. Predicting the impact of rare variants on RNA splicing in CAGI6. Hum Genet. 2025;144:243–251.

  • Baux D, Van Goethem C, Ardouin O, Guignard T, Bergougnoux A, Koenig M, et al. MobiDetails: online DNA variants interpretation. Eur J Hum Genet. 2021;29:356–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbosa P, Savisaar R, Carmo-Fonseca M, Fonseca A Computational prediction of human deep intronic variation. GigaScience. 2023. 12, https://doi.org/10.1093/gigascience/giad085.

  • Marone M, Mozzetti S, De Ritis D, Pierelli L, Scambia G. Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online. 2001;3:19–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Shanti N, Saini A, Stewart CE. Two-Step versus One-Step RNA-to-CT 2-Step and One-Step RNA-to-CT 1-Step: validity, sensitivity, and efficiency. J Biomol Tech. 2009;20:172–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk?. Front Genet. 2015;6:2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, Iuso A, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017;8:15824.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017;9:eaal5209.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davy G, Rousselin A, Goardon N, Castéra L, Harter V, Legros A, et al. Detecting splicing patterns in genes involved in hereditary breast and ovarian cancer. Eur J Hum Genet. 2017;25:1147–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandão RD, Mensaert K, López-Perolio I, Tserpelis D, Xenakis M, Lattimore V, et al. Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes. Intl J Cancer. 2019;145:401–14.

    Article 

    Google Scholar
     

  • Dobin A, Gingeras TR. Optimizing RNA-Seq Mapping with STAR. Methods Mol Biol. 2016;1415:245–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leman R, Harter V, Atkinson A, Davy G, Rousselin A, Muller E, et al. SpliceLauncher: a tool for detection, annotation and relative quantification of alternative junctions from RNAseq data. Bioinformatics. 2020;36:1634–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yépez VA, Mertes C, Müller MF, Klaproth-Andrade D, Wachutka L, Frésard L, et al. Detection of aberrant gene expression events in RNA sequencing data. Nat Protoc. 2021;16:1276–96.

    Article 
    PubMed 

    Google Scholar
     

  • Fenn A, Tsoy O, Faro T, Rößler FLM, Dietrich A, Kersting J, et al. Alternative splicing analysis benchmark with DICAST. NAR Genom Bioinf. 2023;5:lqad044.

    Article 

    Google Scholar
     

  • Cooper TA. Use of minigene systems to dissect alternative splicing elements. Methods. 2005;37:331–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaildrat P, Killian A, Martins A, Tournier I, Frébourg T, Tosi M. Use of splicing reporter minigene assay to evaluate the effect on splicing of unclassified genetic variants. Methods Mol Biol. 2010;653:249–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh G, Cooper TA. Minigene reporter for identification and analysis of cis elements and trans factors affecting pre-mRNA splicing. Biotechniques. 2006;41:177–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Streuli M, Saito H. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO J. 1989;8:787–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Tertre M, Ka C, Raud L, Berlivet I, Gourlaouen I, Richard G, et al. Splicing analysis of SLC40A1 missense variations and contribution to hemochromatosis type 4 phenotypes. Blood Cells Mol Dis. 2021;87:102527.

    Article 
    PubMed 

    Google Scholar
     

  • Wu H, Boulling A, Cooper DN, Li Z-S, Liao Z, Férec C, et al. Analysis of the impact of known SPINK1 missense variants on Pre-mRNA splicing and/or mRNA stability in a full-length gene assay. Genes. 2017;8:263.

  • Ottesen EW, Seo J, Luo D, Singh NN, Singh RN. A super minigene with a short promoter and truncated introns recapitulates essential features of transcription and splicing regulation of the SMN1 and SMN2 genes. Nucleic Acids Res. 2024;52:3547–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sangermano R, Khan M, Cornelis SS, Richelle V, Albert S, Garanto A, et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018;28:100–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bueno-Martínez E, Sanoguera-Miralles L, Valenzuela-Palomo A, Esteban-Sánchez A, Lorca V, Llinares-Burguet I, et al. Minigene-based splicing analysis and ACMG/AMP-based tentative classification of 56 ATM variants. J Pathol. 2022;258:83–101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanoguera-Miralles L, Valenzuela-Palomo A, Bueno-Martínez E, Esteban-Sánchez A, Lorca V, Llinares-Burguet I, et al. Systematic Minigene-Based Splicing Analysis and Tentative Clinical Classification of 52 CHEK2 Splice-Site Variants. Clin Chem. 2024;70:319–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott A, Hernandez F, Chamberlin A, Smith C, Karam R, Kitzman JO. Saturation-scale functional evidence supports clinical variant interpretation in Lynch syndrome. Genome Biol. 2022;23:266.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, et al. Performance of ACMG-AMP Variant-interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium. Am J Hum Genet. 2016;98:1067–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deans ZC, Ahn JW, Carreira IM, Dequeker E, Henderson M, Lovrecic L, et al. Recommendations for reporting results of diagnostic genomic testing. Eur J Hum Genet. 2022;30:1011–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker LC, Hoya M, Wiggins GAR, Lindy A, Vincent LM, Parsons MT, et al. ClinGen Sequence Variant Interpretation Working Group. Using the ACMG/AMP framework to capture evidence related to predicted and observed impact on splicing: recommendations from the ClinGen SVI Splicing Subgroup. Am J Hum Genet. 2023;110:1046–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenthal ET, Bowles KR, Pruss D, van Kan A, Vail PJ, McElroy H, et al. Exceptions to the rule: case studies in the prediction of pathogenicity for genetic variants in hereditary cancer genes. Clin Genet. 2015;88:533–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Perolio I, Leman R, Behar R, Lattimore V, Pearson JF, Castéra L, et al. Alternative splicing and ACMG-AMP-2015-based classification of PALB2 genetic variants: an ENIGMA report. J Med Genet. 2019;56:453–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M, Dwight SS, et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am J Hum Genet. 2017;100:895–906.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bean LJH, Funke B, Carlston CM, Gannon JL, Kantarci S, Krock BL, et al. ACMG Laboratory Quality Assurance Committee. Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22:453–61.

    Article 
    PubMed 

    Google Scholar
     

  • Tubeuf H, Caputo SM, Sullivan T, Rondeaux J, Krieger S, Caux-Moncoutier V, et al. Calibration of pathogenicity due to variant-induced leaky splicing defects by using BRCA2 Exon 3 as a model system. Cancer Res. 2020;80:3593–605.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Hoya M, Soukarieh O, López-Perolio I, Vega A, Walker LC, van Ierland Y, et al. Combined genetic and splicing analysis of BRCA1 c.[594-2A>C; 641A>G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms. Hum Mol Genet. 2016;25:2256–68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolas-Martinez EC, Robinson O, Pflueger C, Gardner A, Corbett MA, Ritchie T, et al. RNA variant assessment using transactivation and transdifferentiation. Am J Hum Genet. 2024;111:1673–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar