• Fava, S. et al. Magnetic field expulsion in optically driven YBa2Cu3O6.48. Nature 632, 75 (2024).

    Article 

    Google Scholar
     

  • Li, N. et al. Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wigner, E. P. in Philosophical Reflections and Syntheses (ed. Mehra, J.) 534–549 (Springer, 1995).

  • Goldman, N. & Dalibard, J. Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014).


    Google Scholar
     

  • Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Dogra, L. H. et al. Universal equation of state for wave turbulence in a quantum gas. Nature 620, 521 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Engels, P., Atherton, C. & Hoefer, M. A. Observation of Faraday waves in a Bose-Einstein condensate. Phys. Rev. Lett. 98, 095301 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Smits, J., Liao, L., Stoof, H. T. C. & van der Straten, P. Observation of a space-time crystal in a superfluid quantum gas. Phys. Rev. Lett. 121, 185301 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nguyen, J. H. V. et al. Parametric excitation of a Bose-Einstein condensate: from Faraday waves to granulation. Phys. Rev. X 9, 011052 (2019).


    Google Scholar
     

  • Zhang, Z., Yao, K. X., Feng, L., Hu, J. & Chin, C. Pattern formation in a driven Bose-Einstein condensate. Nat. Phys. 16, 652 (2020).

    Article 

    Google Scholar
     

  • Dupont, N. et al. Emergence of tunable periodic density correlations in a Floquet-Bloch system. Proc. Natl Acad. Sci. USA 120, e2300980120 (2023).

    Article 

    Google Scholar
     

  • Gross, E. P. Unified theory of interacting bosons. Phys. Rev. 106, 161 (1957).

    Article 
    ADS 

    Google Scholar
     

  • Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107 (1969).

    ADS 

    Google Scholar
     

  • Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, J.-R. et al. A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein condensates. Nature 543, 91 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Recati, A. & Stringari, S. Supersolidity in ultracold dipolar gases. Nat. Rev. Phys. 5, 735 (2023).

    Article 

    Google Scholar
     

  • Poli, E. et al. Glitches in rotating supersolids. Phys. Rev. Lett. 131, 223401 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Xiang, J. et al. Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2. Nature 625, 270 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).


    Google Scholar
     

  • Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).


    Google Scholar
     

  • Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 574, 386 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ilzhöfer, P. et al. Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms. Nat. Phys. 17, 356 (2021).

    Article 

    Google Scholar
     

  • Tanzi, L. et al. Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia. Science 371, 1162 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Norcia, M. A. et al. Can angular oscillations probe superfluidity in dipolar supersolids? Phys. Rev. Lett. 129, 040403 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Biagioni, G. et al. Measurement of the superfluid fraction of a supersolid by Josephson effect. Nature 629, 773 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Casotti, E. et al. Observation of vortices in a dipolar supersolid. Nature 635, 327 (2024).

    Article 

    Google Scholar
     

  • Hofmann, J. & Zwerger, W. Hydrodynamics of a superfluid smectic. J. Stat. Mech.: Theory Exp. 2021, 033104 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Blakie, P. B., Chomaz, L., Baillie, D. & Ferlaino, F. Compressibility and speeds of sound across the superfluid-to-supersolid phase transition of an elongated dipolar gas. Phys. Rev. Res. 5, 033161 (2023).

    Article 

    Google Scholar
     

  • Šindik, M., Zawiślak, T., Recati, A. & Stringari, S. Sound, superfluidity, and layer compressibility in a ring dipolar supersolid. Phys. Rev. Lett. 132, 146001 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Natale, G. et al. Excitation spectrum of a trapped dipolar supersolid and its experimental evidence. Phys. Rev. Lett. 123, 050402 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chisholm, C. S. et al. Probing supersolidity through excitations in a spin-orbit-coupled Bose-Einstein condensate. Preprint at arxiv.org/abs/2412.13861 (2024).

  • Yoo, C.-D. & Dorsey, A. T. Hydrodynamic theory of supersolids: variational principle, effective Lagrangian, and density-density correlation function. Phys. Rev. B 81, 134518 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Liebster, N. et al. Observation of pattern stabilization in a driven superfluid. Phys. Rev. X 15, 011026 (2025).


    Google Scholar
     

  • Staliunas, K., Longhi, S. & de Valcárcel, G. J. Faraday patterns in Bose-Einstein condensates. Phys. Rev. Lett. 89, 210406 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Kagan, Y. & Manakova, L. A. Formation of a condensed state with a macroscopic number of phonons in ultracold Bose gases. Phys. Rev. A 76, 023601 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fujii, K. et al. Stable-fixed-point description of square-pattern formation in driven two-dimensional Bose-Einstein condensates. Phys. Rev. A 109, L051301 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Etrych, J. et al. Pinpointing Feshbach resonances and testing Efimov universalities in 39K. Phys. Rev. Res. 5, 013174 (2023).

    Article 

    Google Scholar
     

  • Hans, M. et al. High signal to noise absorption imaging of alkali atoms at moderate magnetic fields. Rev. Sci. Instrum. 92, 023203 (2021).

    Article 

    Google Scholar
     

  • Hertkorn, J. et al. Decoupled sound and amplitude modes in trapped dipolar supersolids. Phys. Rev. Res. 6, L042056 (2024).

    Article 

    Google Scholar
     

  • Martin, P. C., Parodi, O. & Pershan, P. S. Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A 6, 2401 (1972).

    Article 
    ADS 

    Google Scholar
     

  • Leggett, A. J. Can a solid be ‘superfluid’? Phys. Rev. Lett. 25, 1543 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Chauveau, G. et al. Superfluid fraction in an interacting spatially modulated Bose-Einstein condensate. Phys. Rev. Lett. 130, 226003 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tao, J., Zhao, M. & Spielman, I. B. Observation of anisotropic superfluid density in an artificial crystal. Phys. Rev. Lett. 131, 163401 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fruchart, M., Hanai, R., Littlewood, P. B. & Vitelli, V. Non-reciprocal phase transitions. Nature 592, 363 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sánchez-Baena, J., Politi, C., Maucher, F., Ferlaino, F. & Pohl, T. Heating a dipolar quantum fluid into a solid. Nat. Commun. 14, 1868 (2023).

    Article 

    Google Scholar
     

  • Viermann, C. et al. Quantum field simulator for dynamics in curved spacetime. Nature 611, 260 (2022).

    Article 
    ADS 

    Google Scholar