• Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Fert, A. Nobel Lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).

    Article 

    Google Scholar
     

  • Fert, A. & Campbell, I. A. Two-current conduction in nickel. Phys. Rev. Lett. 21, 1190–1192 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Vakili, K. et al. Spin-dependent resistivity at transitions between integer quantum Hall states. Phys. Rev. Lett. 94, 176402 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Falson, J. et al. Even-denominator fractional quantum Hall physics in ZnO. Nat. Phys. 11, 347–351 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Maryenko, D. et al. Spin-selective electron quantum transport in nonmagnetic MgZnO/ZnO heterostructures. Phys. Rev. Lett. 115, 197601 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Xu, S. et al. Odd-integer quantum Hall states and giant spin susceptibility in p-type few-layer WSe2. Phys. Rev. Lett. 118, 067702 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gustafsson, M. V. et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Shi, Q. et al. Odd-and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

  • Shi, Q. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 17, 577–582 (2021).

  • Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, H. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    Article 

    Google Scholar
     

  • Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article 

    Google Scholar
     

  • Pisoni, R. et al. Absence of interlayer tunnel coupling of K-valley electrons in bilayer MoS2. Phys. Rev. Lett. 123, 117702 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lin, J. et al. Determining interaction enhanced valley susceptibility in spin-valley-locked MoS2. Nano Lett. 19, 1736–1742 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Movva, H. C. et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9, 10402–10410 (2015).

    Article 

    Google Scholar
     

  • Zeng, Y. et al. High-quality magnetotransport in graphene using the edge-free Corbino geometry. Phys. Rev. Lett. 122, 137701 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sodemann, I. & MacDonald, A. H. Landau level mixing and the fractional quantum Hall effect. Phys. Rev. B 87, 245425 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Peterson, M. R. & Nayak, C. More realistic Hamiltonians for the fractional quantum Hall regime in GaAs and graphene. Phys. Rev. B 87, 245129 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Simon, S. H. & Rezayi, E. H. Landau level mixing in the perturbative limit. Phys. Rev. B 87, 155426 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hunt, B. M. et al. Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene. Nat. Commun. 8, 948 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Shkolnikov, Y. P., Misra, S., Bishop, N. C., De Poortere, E. P. & Shayegan, M. Observation of quantum Hall ‘valley skyrmions’. Phys. Rev. Lett. 95, 066809 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Pisoni, R. et al. Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. et al. Spontaneous valley polarization of interacting carriers in a monolayer semiconductor. Phys. Rev. Lett. 125, 147602 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Haldane, F. D. M. & Yang, K. Landau level mixing and levitation of extended states in two dimensions. Phys. Rev. Lett. 78, 298 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Jungwirth, T. & MacDonald, A. H. Resistance spikes and domain wall loops in Ising quantum Hall ferromagnets. Phys. Rev. Lett. 87, 216801 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Shih, E.-M. et al. Raw data of spin-selective magneto-conductivity in WSe2. Figshare https://doi.org/10.6084/m9.figshare.28435061 (2025).