• Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Kelton, K. F. Quasicrystals: structure and stability. Int. Mater. Rev. 38, 105–137 (1993).

    Article 

    Google Scholar
     

  • Steurer, W. Quasicrystals: what do we know? What do we want to know? What can we know? Acta Crystallogr. Sect. A: Found. Adv. 74, 1–11 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Shimasaki, T. et al. Anomalous localization in a kicked quasicrystal. Nat. Phys. 20, 409–414 (2024).

    Article 

    Google Scholar
     

  • Jeon, S. Y., Kwon, H. & Hur, K. Intrinsic photonic wave localization in a three-dimensional icosahedral quasicrystal. Nat. Phys. 13, 363–368 (2017).

    Article 

    Google Scholar
     

  • Nagai, Y. et al. High-Temperature atomic diffusion and specific heat in quasicrystals. Phys. Rev. Lett. 132, 196301 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ghadimi, R., Sugimoto, T., Tanaka, K. & Tohyama, T. Topological superconductivity in quasicrystals. Phys. Rev. B: Condens. Matter Mater. Phys. 104, 144511 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Han, I. et al. Formation of a single quasicrystal upon collision of multiple grains. Nat. Commun. 12, 5790 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dyson, F. Birds and frogs. Not. AMS 56, 212–223 (2009).

    MathSciNet 

    Google Scholar
     

  • Torquato, S., Zhang, G. & De Courcy-Ireland, M. Hidden multiscale order in the primes. J. Phys. A: Math. Theor. 52, 135002 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Steurer, W. Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal, and dodecagonal quasicrystals. Z. Krist. Cryst. Mater. 219, 391–446 (2004).

    Article 

    Google Scholar
     

  • Mukhopadhyay, N. K. & Yadav, T. P. Quasicrystals: a new class of structurally complex intermetallics. J. Indian Inst. Sci. 102, 59–90 (2022).

    Article 

    Google Scholar
     

  • Sun, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kalugin, P. Growth of entropy stabilized quasicrystals. Eur. Phys. J. B 18, 77–84 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Je, K., Lee, S., Teich, E. G., Engel, M. & Glotzer, S. C. Entropic formation of a thermodynamically stable colloidal quasicrystal with negligible phason strain. Proc. Natl Acad. Sci. USA 118, e2011799118 (2021).

    Article 

    Google Scholar
     

  • Widom, M. & Mihalkovič, M. Quasicrystal structure prediction: a review. Isr. J. Chem. https://doi.org/10.1002/ijch.202300122 (2023).

  • Fayen, E., Filion, L., Foffi, G. & Smallenburg, F. Quasicrystal of binary hard spheres on a plane stabilized by configurational entropy. Phys. Rev. Lett. 132, 48202 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Tsai, A. P., Guo, J. Q., Abe, E., Takakura, H. & Sato, T. J. A stable binary quasicrystal. Nature 408, 537–538 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Canfield, P. C. et al. Solution growth of a binary icosahedral quasicrystal of Sc12Zn88. Phys. Rev. B 81, 020201 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Henley, C. L., De Boissieu, M. & Steurer, W. Discussion on clusters, phasons and quasicrystal stabilisation. Philos. Mag. 86, 1131–1151 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Tsai, A. P. Icosahedral clusters, icosaheral order and stability of quasicrystals—a view of metallurgy. Sci. Technol. Adv. Mater. 9, 013008 (2008).

    Article 

    Google Scholar
     

  • Tsai, A. P. A test of Hume-Rothery rules for stable quasicrystals. J. Non-Cryst. Solids 334, 317–322 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Tsai, A. P. Discovery of stable icosahedral quasicrystals: progress in understanding structure and properties. Chem. Soc. Rev. 42, 5352–5365 (2013).

    Article 

    Google Scholar
     

  • Tsai, A. P., Inoue, A., Bizen, Y. & Masumoto, T. Kinetics of the amorphous to icosahedral structure transition in Al-Cu-V and Al-Mn-Si alloys. Acta Metall. 37, 1443–1449 (1989).

    Article 

    Google Scholar
     

  • Okumura, H., Tsai, A. P., Inoue, A. & Masumoto, T. The observation of mechanical relaxation in a quasicrystalline Al75Cu15V10 alloy. Mater. Sci. Eng.: A 181, 781–784 (1994).

    Article 

    Google Scholar
     

  • Weisbecker, P., Bonhomme, G., Bott, G. & Dubois, J. M. The oxidation at 500 °C of AlCuFe quasicrystalline powders: a X-ray diffraction study. J. Non-Cryst. Solids 351, 1630–1638 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Hennig, R. G., Carlsson, A. E., Kelton, K. F. & Henley, C. L. Ab initio Ti-Zr-Ni phase diagram predicts stability of icosahedral TiZrNi quasicrystals. Phys. Rev. B: Condens. Matter Mater. Phys. 71, 144103 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Berns, V. M. & Fredrickson, D. C. Problem solving with pentagons: Tsai-type quasicrystal as a structural response to chemical pressure. Inorg. Chem. 52, 12875–12877 (2013).

    Article 

    Google Scholar
     

  • Henley, C. L., Mihalkovič, M. & Widom, M. Total-energy-based structure prediction for d(AlNiCo). J. Alloys Compd. 342, 221–227 (2002).

    Article 

    Google Scholar
     

  • Engel, M., Damasceno, P. F., Phillips, C. L. & Glotzer, S. C. Computational self-assembly of a one-component icosahedral quasicrystal. Nat. Mater. 14, 109–116 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Mihalkovič, M. & Widom, M. Spontaneous formation of thermodynamically stable Al-Cu-Fe icosahedral quasicrystal from realistic atomistic simulations. Phys. Rev. Res. 2, 013196 (2020).

    Article 

    Google Scholar
     

  • Han, I. et al. Dynamic observation of dendritic quasicrystal growth upon laser-induced solid-state transformation. Phys. Rev. Lett. 125, 195503 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kurtuldu, G. & Bernet, M. The relation between the glass forming ability and nucleation kinetics of metastable quasicrystals in Mg–Zn–Yb liquid. J. Alloys Compd. 945, 168930 (2023).

    Article 

    Google Scholar
     

  • Fiorentini, V. & Methfessel, M. Extracting convergent surface energies from slab calculations. J. Phys.: Condens. Matter 8, 6525 (1996).

    ADS 

    Google Scholar
     

  • Gavini, V., Knap, J., Bhattacharya, K. & Ortiz, M. Non-periodic finite-element formulation of orbital-free density functional theory. J. Mech. Phys. Solids 55, 669–696 (2007).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Dreyer, C. E., Janotti, A. & Van De Walle, C. G. Absolute surface energies of polar and nonpolar planes of GaN. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 081305 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Navrotsky, A. Nanoscale effects on thermodynamics and phase equilibria in oxide systems. ChemPhysChem 12, 2207–2215 (2011).

    Article 

    Google Scholar
     

  • Navrotsky, A. Energetics at the nanoscale: impacts for geochemistry, the environment, and materials. MRS Bull. 41, 139–145 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Takakura, H., Gómez, C. P., Yamamoto, A., De Boissieu, M. & Tsai, A. P. Atomic structure of the binary icosahedral Yb–Cd quasicrystal. Nat. Mater. 6, 58–63 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Yamada, T. et al. Atomic structure and phason modes of the Sc–Zn icosahedral quasicrystal. IUCrJ 3, 247–258 (2016).

    Article 

    Google Scholar
     

  • Motamarri, P. et al. DFT-FE–A massively parallel adaptive finite-element code for large-scale density functional theory calculations. Comput. Phys. Commun. 246, 106853 (2020).

    Article 

    Google Scholar
     

  • Das, S., Motamarri, P., Subramanian, V., Rogers, D. M. & Gavini, V. DFT-FE 1.0: a massively parallel hybrid CPU-GPU density functional theory code using finite-element discretization. Comput. Phys. Commun. 280, 108473 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Motamarri, P. & Gavini, V. Configurational forces in electronic structure calculations using Kohn-Sham density functional theory. Phys. Rev. B 97, 165132 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Motamarri, P., Nowak, M. R., Leiter, K., Knap, J. & Gavini, V. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory. J. Comput. Phys. 253, 308–343 (2013).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhou, Y., Saad, Y., Tiago, M. L. & Chelikowsky, J. R. Self-consistent-field calculations using Chebyshev-filtered subspace iteration. J. Comput. Phys. 219, 172–184 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Das, S. et al. Fast, scalable, and accurate finite-element based ab initio calculations using mixed precision computing: 46 PFLOPS simulation of a metallic dislocation system. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis 1–11 (ACM, 2019).

  • Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 085117 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 4, 72 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Das, S. et al. Large-scale materials modeling at quantum accuracy: ab initio simulations of quasicrystals and interacting extended defects in metallic alloys. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis 1–12 (ACM, 2023).

  • Service, R. F. Exascale computers show off emerging science. Science 382, 864–865 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Curtarolo, S., Morgan, D. & Ceder, G. Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys. Calphad 29, 163–211 (2005).

    Article 

    Google Scholar
     

  • Brown, I. D. Chemical and steric constraints in inorganic solids. Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 48, 553–572 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Lalvani, H. Non-periodic space structures. Int. J. Space Struct. 2, 93–108 (1987).

    Article 

    Google Scholar
     

  • Palenzona, A. & Manfrinetti, P. The phase diagram of the Sc-Zn system. J. Alloys Compd. 247, 195–197 (1997).

    Article 

    Google Scholar
     

  • Sun, W., Jayaraman, S., Chen, W., Persson, K. A. & Ceder, G. Nucleation of metastable aragonite CaCO3 in seawater. Proc. Natl Acad. Sci. USA 112, 3199–3204 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sun, W. & Ceder, G. Efficient creation and convergence of surface slabs. Surf. Sci. 617, 53–59 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Sun, W., Kitchaev, D. A., Kramer, D. & Ceder, G. Non-equilibrium crystallization pathways of manganese oxides in aqueous solution. Nat. Commun. 10, 573 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Balluffi, R. W., Allen, S. M. & Carter, W. C. Kinetics of Materials (Wiley, 2005).

  • Bocklund, B. et al. ESPEI for efficient thermodynamic database development, modification, and uncertainty quantification: Application to Cu-Mg. MRS Commun. 9, 618–627 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tang, C. et al. Thermodynamic modeling of the Sc-Zn system coupled with first-principles calculation. J. Min. Metall. Sect. B: Metall. 48, 123–130 (2012).

    Article 

    Google Scholar
     

  • Palenzona, A. The ytterbium-cadmium system. J. Less Common Met. 25, 367–372 (1971).

    Article 

    Google Scholar
     

  • Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys.: Condens. Matter 35, 353001 (2023).


    Google Scholar
     

  • Carreras, A., Togo, A. & Tanaka, I. DynaPhoPy: a code for extracting phonon quasiparticles from molecular dynamics simulations. Comput. Phys. Commun. 221, 221–234 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Puchala, B. et al. CASM — a software package for first-principles based study of multicomponent crystalline solids. Comput. Mater. Sci. 217, 111897 (2023).

    Article 

    Google Scholar
     

  • Edagawa, K., Kajiyama, K., Tamura, R. & Takeuchi, S. High-temperature specific heat of quasicrystals and a crystal approximant. Mater. Sci. Eng.: A 312, 293–298 (2001).

    Article 

    Google Scholar
     

  • Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    Article 

    Google Scholar
     

  • Fredrickson, D. C. DFT-chemical pressure analysis: visualizing the role of atomic size in shaping the structures of inorganic materials. J. Am. Chem. Soc. 134, 5991–5999 (2012).

    Article 

    Google Scholar
     

  • Fredrickson, R. T. & Fredrickson, D. C. Chemical pressure-derived assembly principles for dodecagonal quasicrystal approximants and other complex Frank-Kasper phases. Inorg. Chem. 61, 17682–17691 (2022).

    Article 

    Google Scholar
     

  • Jiang, K. & Zhang, P. Numerical methods for quasicrystals. J. Comput. Phys. 256, 428–440 (2014).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Yin, J., Jiang, K., Shi, A. C., Zhang, P. & Zhang, L. Transition pathways connecting crystals and quasicrystals. Proc. Natl Acad. Sci. USA 118, e2106230118 (2021).

    Article 

    Google Scholar
     

  • Miao, J., Ercius, P. & Billinge, S. J. L. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016).

    Article 

    Google Scholar
     

  • Fredrickson, D. C., Lee, S. & Hoffmann, R. Interpenetrating polar and nonpolar sublattices in intermetallics: the NaCd2 structure. Angew. Chem. Int. Ed. 46, 1958–1976 (2007).

    Article 

    Google Scholar
     

  • Dijkstra, M. & Luijten, E. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. Nat. Mater. 20, 762–773 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, W. et al. Colloidal quasicrystals engineered with DNA. Nat. Mater. 23, 424–428 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X.-Y. et al. Self-assembled soft alloy with Frank–Kasper phases beyond metals. Nat. Mater. 23, 570–576 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zuo, Y. et al. Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 124, 731–745 (2020).

    Article 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).


    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 29, 465901 (2017).


    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011).

    Article 

    Google Scholar
     

  • Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 160080 (2016).

    Article 

    Google Scholar
     

  • Dinsdale, A. T. SGTE data for pure elements. Calphad 15, 317–425 (1991).

    Article 

    Google Scholar
     

  • Redlich, O. & Kister, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948).

    Article 

    Google Scholar
     

  • Eslami, H., Muggianu, Y. M., Gambino, M. & Bros, J. P. Enthalpies de formation des alliages liquides aluminium-germanium, gallium-germanium et aluminium-gallium-germanium entre 713 et 1230 K. J. Less Common Met. 64, 31–44 (1979).

    Article 

    Google Scholar
     

  • Gelman, A. et al. Bayesian Data Analysis (CRC, 2013).