• Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021). Review on variational quantum algorithms presents details for newcomers to the field.

    Article 

    Google Scholar
     

  • Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022). Review on variational quantum algorithms presents details for newcomers to the field.

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Endo, S., Cai, Z., Benjamin, S. C. & Yuan, X. Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 90, 032001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56, 172–185 (2015). Pedagogical introduction to quantum machine learning.

    Article 
    ADS 

    Google Scholar
     

  • Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L. & Coles, P. J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. https://www.nature.com/articles/s43588-022-00311-3 (2022).

  • Di Meglio, A. et al. Quantum computing for high-energy physics: state of the art and challenges. PRX Quantum 5, 037001 (2024).

    Article 

    Google Scholar
     

  • McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018). Seminal work in which the barren plateaus phenomenon is discovered.

    Article 

    Google Scholar
     

  • Qi, H., Wang, L., Zhu, H., Gani, A. & Gong, C. The barren plateaus of quantum neural networks: review, taxonomy and trends. Quantum Inf. Process. 22, 435 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Arrasmith, A., Holmes, Z., Cerezo, M. & Coles, P. J. Equivalence of quantum barren plateaus to cost concentration and narrow gorges. Quantum Sci. Technol. 7, 045015 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cerezo, M. et al. Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing. Preprint at https://arxiv.org/abs/2312.09121 (2023). This work presents a deep connection between absence of barren plateaus and classical simulability.

  • Bittel, L. & Kliesch, M. Training variational quantum algorithms is NP-hard. Phys. Rev. Lett. 127, 120502 (2021). In this work, it is shown that training variational quantum algorithms can be, in the worst case, NP-hard.

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Fontana, E., Cerezo, M., Arrasmith, A., Rungger, I. & Coles, P. J. Non-trivial symmetries in quantum landscapes and their resilience to quantum noise. Quantum 6, 804 (2022).

    Article 

    Google Scholar
     

  • Anschuetz, E. R. & Kiani, B. T. Beyond barren plateaus: quantum variational algorithms are swamped with traps. Nat. Commun. 13, 7760 (2022). This work showcases the problems of local mínima in variational quantum computing.

    Article 
    ADS 

    Google Scholar
     

  • Anschuetz, E. R. Critical points in quantum generative models. In International Conference on Learning Representations https://openreview.net/forum?id=2f1z55GVQN (2022).

  • Larocca, M. et al. Diagnosing barren plateaus with tools from quantum optimal control. Quantum 6, 824 (2022).

    Article 

    Google Scholar
     

  • Bermejo, P., Aizpurua, B. & Orús, R. Improving gradient methods via coordinate transformations: applications to quantum machine learning. Phys. Rev. Res. 6, 023069 (2024).

    Article 

    Google Scholar
     

  • Nádori, J., Morse, G., Majnay-Takács, Z., Zimborás, Z. & Rakyta, P. Line search strategy for navigating through barren plateaus in quantum circuit training. Preprint at https://arxiv.org/abs/2402.05227 (2024).

  • Sim, S., Johnson, P. D. & Aspuru-Guzik, A. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2, 1900070 (2019).

    Article 

    Google Scholar
     

  • Akshay, V., Philathong, H., Morales, M. E. & Biamonte, J. D. Reachability deficits in quantum approximate optimization. Phys. Rev. Lett. 124, 090504 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Miao, Q. & Barthel, T. Equivalence of cost concentration and gradient vanishing for quantum circuits: an elementary proof in the Riemannian formulation. Quantum Sci. Technol. 9, 045039 (2024).

    Article 

    Google Scholar
     

  • Cerezo, M. & Coles, P. J. Higher order derivatives of quantum neural networks with barren plateaus. Quantum Sci. Technol. 6, 035006 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Puig, R., Drudis, M., Thanasilp, S. & Holmes, Z. Variational quantum simulation: a case study for understanding warm starts. PRX Quantum 6, 010317 (2025).

    Article 

    Google Scholar
     

  • Wang, S. et al. Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun. 12, 6961 (2021). Here, it is shown that noise can induce barren plateaus and deterministic exponential concentration.

    Article 
    ADS 

    Google Scholar
     

  • Diaz, N. L., García-Martín, D., Kazi, S., Larocca, M. & Cerezo, M. Showcasing a barren plateau theory beyond the dynamical lie algebra. Preprint at https://arxiv.org/abs/2310.11505 (2023).

  • Leone, L., Oliviero, S. F., Cincio, L. & Cerezo, M. On the practical usefulness of the hardware efficient ansatz. Quantum 8, 1395 (2024).

    Article 

    Google Scholar
     

  • Thanasilp, S., Wang, S., Nghiem, N. A., Coles, P. & Cerezo, M. Subtleties in the trainability of quantum machine learning models. Quant. Mach. Intell. 5, 21 (2023).

    Article 

    Google Scholar
     

  • Cybulski, J. L. & Nguyen, T. Impact of barren plateaus countermeasures on the quantum neural network capacity to learn. Quantum Inf. Process. 22, 442 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Pérez-Salinas, A., Wang, H. & Bonet-Monroig, X. Analyzing variational quantum landscapes with information content. npj Quantum Inf. 10, 27 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, H.-K., Zhu, C. & Wang, X. Predicting quantum learnability from landscape fluctuation. Preprint at https://arxiv.org/abs/2406.11805 (2024).

  • Sack, S. H., Medina, R. A., Michailidis, A. A., Kueng, R. & Serbyn, M. Avoiding barren plateaus using classical shadows. PRX Quantum 3, 020365 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Okumura, S. & Ohzeki, M. Fourier coefficient of parameterized quantum circuits and barren plateau problem. Preprint at https://arxiv.org/abs/2309.06740 (2023).

  • Nemkov, N. A., Kiktenko, E. O. & Fedorov, A. K. Fourier expansion in variational quantum algorithms. Phys. Rev. A 108, 032406 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Stęchły, M., Gao, L., Yogendran, B., Fontana, E. & Rudolph, M. Connecting the Hamiltonian structure to the QAOA energy and Fourier landscape structure. Preprint at https://arxiv.org/abs/2305.13594 (2023).

  • Dankert, C., Cleve, R., Emerson, J. & Livine, E. Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Sharma, K., Cerezo, M., Cincio, L. & Coles, P. J. Trainability of dissipative perceptron-based quantum neural networks. Phys. Rev. Lett. 128, 180505 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Patti, T. L., Najafi, K., Gao, X. & Yelin, S. F. Entanglement devised barren plateau mitigation. Phys. Rev. Res. 3, 033090 (2021).

    Article 

    Google Scholar
     

  • Marrero, C. O., Kieferová, M. & Wiebe, N. Entanglement-induced barren plateaus. PRX Quantum 2, 040316 (2021).

    Article 

    Google Scholar
     

  • Holmes, Z. et al. Barren plateaus preclude learning scramblers. Phys. Rev. Lett. 126, 190501 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ragone, M. et al. A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits. Nat. Commun. 15, 7172 (2024). This is one of the two concurrent works that present a general theory for characterizing barren plateaus.

    Article 

    Google Scholar
     

  • Fontana, E. et al. Characterizing barren plateaus in quantum ansätze with the adjoint representation. Nat. Commun. 15, 7171 (2024).

    Article 

    Google Scholar
     

  • Schatzki, L., Larocca, M., Nguyen, Q. T., Sauvage, F. & Cerezo, M. Theoretical guarantees for permutation-equivariant quantum neural networks. npj Quantum Inf. 10, 12 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J., Lin, Z. & Jiang, L. Laziness, barren plateau, and noise in machine learning. Mach. Learn. Sci. Technol. 5, 015058 (2024).

    Article 
    ADS 

    Google Scholar
     

  • West, M. T., Heredge, J., Sevior, M. & Usman, M. Provably trainable rotationally equivariant quantum machine learning. PRX Quantum 5, 030320 (2024).

    Article 

    Google Scholar
     

  • García-Martín, D., Larocca, M. & Cerezo, M. Deep quantum neural networks form Gaussian processes. Preprint at https://arxiv.org/abs/2305.09957 (2023).

  • Mele, A. A. Introduction to Haar measure tools in quantum information: a beginner’s tutorial. Quantum 8, 1340 (2024).

    Article 

    Google Scholar
     

  • Ragone, M. et al. Representation theory for geometric quantum machine learning. Preprint at https://arxiv.org/abs/2210.07980 (2022).

  • Cerezo, M., Sone, A., Volkoff, T., Cincio, L. & Coles, P. J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12, 1791 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Uvarov, A. & Biamonte, J. D. On barren plateaus and cost function locality in variational quantum algorithms. J. Phys. A Math. Theor. 54, 245301 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Pesah, A. et al. Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11, 041011 (2021).


    Google Scholar
     

  • Heyraud, V., Li, Z., Donatella, K., Boité, A. L. & Ciuti, C. Efficient estimation of trainability for variational quantum circuits. PRX Quantum 4, 040335 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Z., Yu, L.-W., Duan, L.-M. & Deng, D.-L. The presence and absence of barren plateaus in tensor-network based machine learning. Phys. Rev. Lett. 129, 270501 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Barthel, T. & Miao, Q. Absence of barren plateaus and scaling of gradients in the energy optimization of isometric tensor network states. Preprint at https://arxiv.org/abs/2304.00161 (2023).

  • Miao, Q. & Barthel, T. Isometric tensor network optimization for extensive Hamiltonians is free of barren plateaus. Phys. Rev. A 109, L050402 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Garcia, R. J., Zhao, C., Bu, K. & Jaffe, A. Barren plateaus from learning scramblers with local cost functions. J. High Energy Phys. 2023, 1–79 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Letcher, A., Woerner, S. & Zoufal, C. Tight and efficient gradient bounds for parameterized quantum circuits. Quantum 8, 1484 (2024).

    Article 

    Google Scholar
     

  • Arrazola, J. M. et al. Universal quantum circuits for quantum chemistry. Quantum 6, 742 (2022).

    Article 

    Google Scholar
     

  • Zhang, H.-K., Liu, S. & Zhang, S.-X. Absence of barren plateaus in finite local-depth circuits with long-range entanglement. Phys. Rev. Lett. 132, 150603 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • García-Martín, D., Braccia, P. & Cerezo, M. Architectures and random properties of symplectic quantum circuits. Preprint at https://arxiv.org/abs/2405.10264 (2024).

  • Deneris, A. E., Bermejo, P., Braccia, P., Cincio, L. & Cerezo, M. Exact spectral gaps of random one-dimensional quantum circuits. Preprint at https://arxiv.org/abs/2408.11201 (2024).

  • Napp, J. Quantifying the barren plateau phenomenon for a model of unstructured variational ansätze. Preprint at https://arxiv.org/abs/2203.06174 (2022).

  • Braccia, P., Bermejo, P., Cincio, L. & Cerezo, M. Computing exact moments of local random quantum circuits via tensor networks. Quant. Mach. Intell. 6, 54 (2024).

    Article 

    Google Scholar
     

  • Hu, H.-Y. et al. Demonstration of robust and efficient quantum property learning with shallow shadows. Preprint at https://arxiv.org/abs/2402.17911 (2024).

  • Zhao, C. & Gao, X.-S. Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus. Quantum 5, 466 (2021).

    Article 

    Google Scholar
     

  • Zhang, K., Liu, L., Hsieh, M.-H. & Tao, D. Escaping from the barren plateau via Gaussian initializations in deep variational quantum circuits. Adv. Neural Inf. Process. Syst. https://openreview.net/forum?id=jXgbJdQ2YIy (2022).

  • Wang, Y., Qi, B., Ferrie, C. & Dong, D. Trainability enhancement of parameterized quantum circuits via reduced-domain parameter initialization. Phys. Rev. Appl. 22, 054005 (2024).

    Article 

    Google Scholar
     

  • Park, C.-Y. & Killoran, N. Hamiltonian variational ansatz without barren plateaus. Quantum 8, 1239 (2024).

    Article 

    Google Scholar
     

  • Park, C.-Y., Kang, M. & Huh, J. Hardware-efficient ansatz without barren plateaus in any depth. Preprint at https://arxiv.org/abs/2403.04844 (2024).

  • Sannia, A., Tacchino, F., Tavernelli, I., Giorgi, G. L. & Zambrini, R. Engineered dissipation to mitigate barren plateaus. npj Quantum Inf. 10, 81 (2024).

    Article 

    Google Scholar
     

  • Liu, J., Wilde, F., Mele, A. A., Jiang, L. & Eisert, J. Stochastic noise can be helpful for variational quantum algorithms. Preprint at https://arxiv.org/abs/2210.06723 (2022).

  • Schumann, M., Wilhelm, F. K. & Ciani, A. Emergence of noise-induced barren plateaus in arbitrary layered noise models. Quantum Sci. Technol. 9, 045019 (2024).

    Article 

    Google Scholar
     

  • Singkanipa, P. & Lidar, D. A. Beyond unital noise in variational quantum algorithms: noise-induced barren plateaus and fixed points. Quantum 9, 1617 (2025).

    Article 

    Google Scholar
     

  • Bremner, M. J., Mora, C. & Winter, A. Are random pure states useful for quantum computation? Phys. Rev. Lett. 102, 190502 (2009).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Gross, D., Flammia, S. T. & Eisert, J. Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Yang, G. et al. Tensor programs v: tuning large neural networks via zero-shot hyperparameter transfer. Adv. Neural Inf. Process. Syst. 34, 17084–17097 (2021).


    Google Scholar
     

  • Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  • Horgan, J. Scott Aaronson answers every ridiculously big question throw at him. Sci. Am. https://blogs.scientificamerican.com/cross-check/scott-aaronson-answers-every-ridiculously-big-question-i-throw-at-him (2016).

  • Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. https://www.nature.com/articles/s41567-021-01287-z (2021).

  • Jäger, J. & Krems, R. V. Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines. Nat. Commun. 14, 576 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Holmes, Z., Sharma, K., Cerezo, M. & Coles, P. J. Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3, 010313 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Friedrich, L. & Maziero, J. Quantum neural network cost function concentration dependency on the parametrization expressivity. Sci. Rep. 13, 9978 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).

    Article 

    Google Scholar
     

  • Haug, T., Bharti, K. & Kim, M. S. Capacity and quantum geometry of parametrized quantum circuits. PRX Quantum 2, 040309 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Larocca, M., Ju, N., García-Martín, D., Coles, P. J. & Cerezo, M. Theory of overparametrization in quantum neural networks. Nat. Comput. Sci. 3, 542–551 (2023).

    Article 

    Google Scholar
     

  • Somma, R., Ortiz, G., Barnum, H., Knill, E. & Viola, L. Nature and measure of entanglement in quantum phase transitions. Phys. Rev. A 70, 042311 (2004).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Somma, R. D. Quantum computation, complexity, and many-body physics. Preprint at https://arxiv.org/abs/quant-ph/0512209 (2005).

  • Khatri, S. et al. Quantum-assisted quantum compiling. Quantum 3, 140 (2019).

    Article 

    Google Scholar
     

  • Uvarov, A., Biamonte, J. D. & Yudin, D. Variational quantum eigensolver for frustrated quantum systems. Phys. Rev. B 102, 075104 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kashif, M. & Al-Kuwari, S. The impact of cost function globality and locality in hybrid quantum neural networks on NISQ devices. Mach. Learn. Sci. Technol. 4, 015004 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Leadbeater, C., Sharrock, L., Coyle, B. & Benedetti, M. F-divergences and cost function locality in generative modelling with quantum circuits. Entropy 23, 1281 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Cerezo, M., Sharma, K., Arrasmith, A. & Coles, P. J. Variational quantum state eigensolver. npj Quantum Inf. 8, 1–11 (2022).

    Article 

    Google Scholar
     

  • Kiani, B. T., De Palma, G., Marvian, M., Liu, Z.-W. & Lloyd, S. Learning quantum data with the quantum earth mover’s distance. Quantum Sci. Technol. 7, 045002 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zambrano, L., Muñoz-Moller, A. D., Muñoz, M., Pereira, L. & Delgado, A. Avoiding barren plateaus in the variational determination of geometric entanglement. Quantum Sci. Technol. 9, 025016 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ogunkoya, O., Morris, K. & Kürkçüoglu, D. M. Investigating parameter trainability in the snap-displacement protocol of a qudit system. Preprint at https://arxiv.org/abs/2309.14942 (2023).

  • Zhang, B. & Zhuang, Q. Energy-dependent barren plateau in bosonic variational quantum circuits. Quantum Sci. Technol. 10, 015009 (2024).

    Article 

    Google Scholar
     

  • Wiersema, R., Zhou, C., Carrasquilla, J. F. & Kim, Y. B. Measurement-induced entanglement phase transitions in variational quantum circuits. SciPost Phys. 14, 147 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Shaydulin, R. & Wild, S. M. Importance of kernel bandwidth in quantum machine learning. Phys. Rev. A 106, 042407 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kashif, M. & Al-Kuwari, S. The unified effect of data encoding, ansatz expressibility and entanglement on the trainability of HQNNs. Int. J. Parallel Emergent Distrib. Syst. 38, 362–400 (2023).

    Article 

    Google Scholar
     

  • Das, S., Martina, S. & Caruso, F. The role of data embedding in equivariant quantum convolutional neural networks. Quant. Mach. Intell. 6, 82 (2024).

    Article 

    Google Scholar
     

  • Mhiri, H. et al. Constrained and vanishing expressivity of quantum Fourier models. Preprint at https://arxiv.org/abs/2403.09417 (2024).

  • Stilck França, D. & Garcia-Patron, R. Limitations of optimization algorithms on noisy quantum devices. Nat. Phys. 17, 1221–1227 (2021).

    Article 

    Google Scholar
     

  • De Palma, G., Marvian, M., Rouzé, C. & França, D. S. Limitations of variational quantum algorithms: a quantum optimal transport approach. PRX Quantum 4, 010309 (2023).

    Article 

    Google Scholar
     

  • Crognaletti, G., Grossi, M. & Bassi, A. Estimates of loss function concentration in noisy parametrized quantum circuits. Preprint at https://arxiv.org/abs/2410.01893 (2024).

  • Mele, A. A. et al. Noise-induced shallow circuits and absence of barren plateaus. Preprint at https://arxiv.org/abs/2403.13927 (2024).

  • Fefferman, B., Ghosh, S., Gullans, M., Kuroiwa, K. & Sharma, K. Effect of non-unital noise on random circuit sampling. PRX Quantum 5, 030317 (2024).

    Article 

    Google Scholar
     

  • Deshpande, A. et al. Dynamic parameterized quantum circuits: expressive and barren-plateau free. Preprint at https://arxiv.org/abs/2411.05760 (2024).

  • Wilde, M. M. Quantum Information Theory (Cambridge Univ. Press, 2013).

  • Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article 
    ADS 

    Google Scholar
     

  • He, Z., Li, L., Zheng, S., Li, Y. & Situ, H. Variational quantum compiling with double q-learning. N. J. Phys. 23, 033002 (2021).

    Article 

    Google Scholar
     

  • Moro, L., Paris, M. G. A., Restelli, M. & Prati, E. Quantum compiling by deep reinforcement learning. Commun. Phys. 4, 178 (2021).

    Article 

    Google Scholar
     

  • Beer, K. et al. Training deep quantum neural networks. Nat. Commun. 11, 808 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Buonaiuto, G., Gargiulo, F., De Pietro, G., Esposito, M. & Pota, M. The effects of quantum hardware properties on the performances of variational quantum learning algorithms. Quant. Mach. Intell. 6, 9 (2024).

    Article 

    Google Scholar
     

  • Liu, X., Liu, G., Zhang, H.-K., Huang, J. & Wang, X. Mitigating barren plateaus of variational quantum eigensolvers. IEEE Trans. Quant. Eng. 1–19 https://ieeexplore.ieee.org/abstract/document/10485449 (2024).

  • Zhang, H.-K., Zhu, C., Liu, G. & Wang, X. Exponential hardness of optimization from the locality in quantum neural networks. In Proc. AAAI Conference on Artificial Intelligence Vol. 38, 16741–16749 https://ojs.aaai.org/index.php/AAAI/article/view/29614 (2024).

  • Wecker, D., Hastings, M. B. & Troyer, M. Progress towards practical quantum variational algorithms. Phys. Rev. A 92, 042303 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wiersema, R. et al. Exploring entanglement and optimization within the Hamiltonian variational ansatz. PRX Quant. 1, 020319 (2020).

    Article 

    Google Scholar
     

  • Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wiersema, R., Kökcü, E., Kemper, A. F. & Bakalov, B. N. Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies. npj Quantum Inf. 10, 110 (2024).

    Article 

    Google Scholar
     

  • Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

  • Hadfield, S. et al. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 34 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bärtschi, A. & Eidenbenz, S. Grover mixers for QAOA: shifting complexity from mixer design to state preparation. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) 72–82 https://www.computer.org/csdl/proceedings-article/qce/2020/896900a072/1p2VnUCmpYA (IEEE, 2020).

  • Fuchs, F. G., Lye, K. O., Møll Nilsen, H., Stasik, A. J. & Sartor, G. Constraint preserving mixers for the quantum approximate optimization algorithm. Algorithms 15, 202 (2022).

    Article 

    Google Scholar
     

  • Tate, R., Moondra, J., Gard, B., Mohler, G. & Gupta, S. Warm-started QAOA with custom mixers provably converges and computationally beats Goemans–Williamson’s max-cut at low circuit depths. Quantum 7, 1121 (2023).

    Article 

    Google Scholar
     

  • Zhang, B., Sone, A. & Zhuang, Q. Quantum computational phase transition in combinatorial problems. npj Quantum Inf. 8, 87 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kazi, S. et al. Analyzing the quantum approximate optimization algorithm: ansätze, symmetries, and Lie algebras. Preprint at https://arxiv.org/abs/2410.05187 (2024).

  • Crooks, G. E. Performance of the quantum approximate optimization algorithm on the maximum cut problem. Preprint at https://arxiv.org/abs/1811.08419 (2018).

  • Boulebnane, S. & Montanaro, A. Solving Boolean satisfiability problems with the quantum approximate optimization algorithm. PRX Quantum 5, 030348 (2024).

    Article 

    Google Scholar
     

  • Montanaro, A. & Zhou, L. Quantum speedups in solving near-symmetric optimization problems by low-depth QAOA. Preprint at https://arxiv.org/abs/2411.04979 (2024).

  • Herrman, R., Lotshaw, P. C., Ostrowski, J., Humble, T. S. & Siopsis, G. Multi-angle quantum approximate optimization algorithm. Sci. Rep. 12, 1–10 (2022).

    Article 

    Google Scholar
     

  • Aguilar, G., Cichy, S., Eisert, J. & Bittel, L. Full classification of Pauli Lie algebras Preprint at https://arxiv.org/abs/2408.00081 (2024).

  • Chapman, A. & Flammia, S. T. Characterization of solvable spin models via graph invariants. Quantum 4, 278 (2020).

    Article 

    Google Scholar
     

  • Kökcü, E., Wiersema, R., Kemper, A. F. & Bakalov, B. N. Classification of dynamical Lie algebras generated by spin interactions on undirected graphs. Preprint at https://arxiv.org/abs/2409.19797 (2024).

  • Haah, J., Liu, Y. & Tan, X. Efficient approximate unitary designs from random Pauli rotations. In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS) 463–475 (IEEE, 2024).

  • Zhou, N.-R., Liu, X.-X., Chen, Y.-L. & Du, N.-S. Quantum k-nearest-neighbor image classification algorithm based on K-L transform. Int. J. Theor. Phys. 60, 1209–1224 (2021).

    Article 

    Google Scholar
     

  • Chai, Y. et al. Shortcuts to the quantum approximate optimization algorithm. Phys. Rev. A 105, 042415 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chandarana, P. et al. Digitized-counterdiabatic quantum approximate optimization algorithm. Phys. Rev. Res. 4, 013141 (2022).

    Article 

    Google Scholar
     

  • Vizzuso, M., Passarelli, G., Cantele, G. & Lucignano, P. Convergence of digitized-counterdiabatic QAOA: circuit depth versus free parameters. N. J. Phys. 26, 013002 (2024).

    Article 
    MathSciNet 

    Google Scholar
     

  • Shaydulin, R., Lotshaw, P. C., Larson, J., Ostrowski, J. & Humble, T. S. Parameter transfer for quantum approximate optimization of weighted maxcut. ACM Trans. Quantum Comput. 4, 115 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Farhi, E., Goldstone, J., Gutmann, S. & Zhou, L. The quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. Quantum 6, 759 (2022).

    Article 

    Google Scholar
     

  • Taube, A. G. & Bartlett, R. J. New perspectives on unitary coupled-cluster theory. Int. J. Quantum Chem. 106, 3393–3401 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Lee, J., Huggins, W. J., Head-Gordon, M. & Whaley, K. B. Generalized unitary coupled cluster wave functions for quantum computation. J. Chem. Theory Comput. 15, 311–324 (2018).

    Article 

    Google Scholar
     

  • Mao, R., Tian, G. & Sun, X. Towards determining the presence of barren plateaus in some chemically inspired variational quantum algorithms. Commun. Phys. 7, 342 (2024).

    Article 

    Google Scholar
     

  • Bermejo, P. et al. Quantum convolutional neural networks are (effectively) classically simulable. Preprint at https://arxiv.org/abs/2408.12739 (2024).

  • Cichy, S., Faehrmann, P. K., Khatri, S. & Eisert, J. Perturbative gadgets for gate-based quantum computing: nonrecursive constructions without subspace restrictions. Phys. Rev. A 109, 052624 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kiani, B. T., Lloyd, S. & Maity, R. Learning unitaries by gradient descent. Preprint at https://arxiv.org/abs/2001.11897 (2020).

  • Rajakumar, J., Golden, J., Bärtschi, A. & Eidenbenz, S. Trainability barriers in low-depth QAOA landscapes. In Proc. 21st ACM International Conference on Computing Frontiers, CF ’24, 199–206 https://doi.org/10.1145/3649153.3649204 (Association for Computing Machinery, 2024).

  • Marshall, S. C., Gyurik, C. & Dunjko, V. High dimensional quantum machine learning with small quantum computers. Quantum 7, 1078 (2023).

    Article 

    Google Scholar
     

  • Zhang, K., Hsieh, M.-H., Liu, L. & Tao, D. Toward trainability of quantum neural networks. Preprint at https://arxiv.org/abs/2011.06258 (2020).

  • Larocca, M. et al. Group-invariant quantum machine learning. PRX Quantum 3, 030341 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nguyen, Q. T. et al. Theory for equivariant quantum neural networks. PRX Quantum 5, 020328 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Meyer, J. J. et al. Exploiting symmetry in variational quantum machine learning. PRX Quantum 4, 010328 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Skolik, A., Cattelan, M., Yarkoni, S., Bäck, T. & Dunjko, V. Equivariant quantum circuits for learning on weighted graphs. npj Quantum Inf. 9, 47 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Volkoff, T. & Coles, P. J. Large gradients via correlation in random parameterized quantum circuits. Quantum Sci. Technol. 6, 025008 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sauvage, F., Larocca, M., Coles, P. J. & Cerezo, M. Building spatial symmetries into parameterized quantum circuits for faster training. Quantum Sci. Technol. 9, 015029 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kazi, S., Larocca, M. & Cerezo, M. On the universality of sn-equivariant k-body gates. N. J. Phys. 26, 053030 (2024).

    Article 

    Google Scholar
     

  • Monbroussou, L., Landman, J., Grilo, A. B., Kukla, R. & Kashefi, E. Trainability and expressivity of Hamming-weight preserving quantum circuits for machine learning. Preprint at https://arxiv.org/abs/2309.15547 (2023).

  • Raj, S. et al. Quantum deep hedging. Quantum 7, 1191 (2023).

    Article 

    Google Scholar
     

  • Lee, J., Magann, A. B., Rabitz, H. A. & Arenz, C. Progress toward favorable landscapes in quantum combinatorial optimization. Phys. Rev. A 104, 032401 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Jozsa, R. & Miyake, A. Matchgates and classical simulation of quantum circuits. Proc. R. Soc. A Math. Phys. Eng. Sci. 464, 3089–3106 (2008).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Wan, K., Huggins, W. J., Lee, J. & Babbush, R. Matchgate shadows for fermionic quantum simulation. Commun. Math. Phys. 404, 629 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • De Melo, F., Ćwikliński, P. & Terhal, B. M. The power of noisy fermionic quantum computation. N. J. Phys. 15, 013015 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Oszmaniec, M., Dangniam, N., Morales, M. E. & Zimborás, Z. Fermion sampling: a robust quantum computational advantage scheme using fermionic linear optics and magic input states. PRX Quantum 3, 020328 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Matos, G., Self, C. N., Papić, Z., Meichanetzidis, K. & Dreyer, H. Characterization of variational quantum algorithms using free fermions. Quantum 7, 966 (2023).

    Article 

    Google Scholar
     

  • Diaz, N. L. et al. Parallel-in-time quantum simulation via Page and Wootters quantum time. Preprint at https://arxiv.org/abs/2308.12944 (2023).

  • Kökcü, E. et al. Fixed depth Hamiltonian simulation via Cartan decomposition. Phys. Rev. Lett. 129, 070501 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Volkoff, T. J. Efficient trainability of linear optical modules in quantum optical neural networks. J. Russ. Laser Res. 42, 250–260 (2021).

    Article 

    Google Scholar
     

  • Volkoff, T., Holmes, Z. & Sornborger, A. Universal compiling and (no-)free-lunch theorems for continuous-variable quantum learning. PRX Quantum 2, 040327 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Arjovsky, M., Shah, A. & Bengio, Y. Unitary evolution recurrent neural networks. In International Conference on Machine Learning 1120–1128. https://proceedings.mlr.press/v48/arjovsky16.html (PMLR, 2016).

  • Jing, L. et al. Tunable efficient unitary neural networks (EUNN) and their application to RNNs. In International Conference on Machine Learning 1733–1741. https://proceedings.mlr.press/v70/jing17a.html (PMLR, 2017).

  • Bilkis, M., Cerezo, M., Verdon, G., Coles, P. J. & Cincio, L. A semi-agnostic ansatz with variable structure for variational quantum algorithms. Quant. Mach. Intell. 5, 43 (2023).

    Article 

    Google Scholar
     

  • Du, Y., Huang, T., You, S., Hsieh, M.-H. & Tao, D. Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers. npj Quantum Inf. 8, 62 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Grimsley, H. R., Economou, S. E., Barnes, E. & Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10, 3007 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tang, H. L. et al. qubit-ADAPT-VQE: an adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor. PRX Quantum 2, 020310 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sim, S., Romero, J., Gonthier, J. F. & Kunitsa, A. A. Adaptive pruning-based optimization of parameterized quantum circuits. Quantum Sci. Technol. 6, 025019 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z.-J., Kyaw, T. H., Kottmann, J., Degroote, M. & Aspuru-Guzik, A. Mutual information-assisted adaptive variational quantum eigensolver. Quantum Sci. Technol. https://iopscience.iop.org/article/10.1088/2058-9565/abdca4 (2021).

  • Tkachenko, N. V. et al. Correlation-informed permutation of qubits for reducing ansatz depth in VQE. PRX Quantum 2, 020337 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Claudino, D., Wright, J., McCaskey, A. J. & Humble, T. S. Benchmarking adaptive variational quantum eigensolvers. Front. Chem. 8, 1152 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Rattew, A. G., Hu, S., Pistoia, M., Chen, R. & Wood, S. A domain-agnostic, noise-resistant, hardware-efficient evolutionary variational quantum eigensolver. Preprint at https://arxiv.org/abs/1910.09694 (2019).

  • Chivilikhin, D. et al. MoG-VQE: multiobjective genetic variational quantum eigensolver. Preprint at https://arxiv.org/abs/2007.04424 (2020).

  • Cincio, L., Subaşı, Y., Sornborger, A. T. & Coles, P. J. Learning the quantum algorithm for state overlap. N. J. Phys. 20, 113022 (2018).

    Article 

    Google Scholar
     

  • Zhang, S.-X., Hsieh, C.-Y., Zhang, S. & Yao, H. Differentiable quantum architecture search. Quantum Sci. Technol. 7, 045023 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wada, K., Raymond, R., Sato, Y. & Watanabe, H. C. Sequential optimal selections of single-qubit gates in parameterized quantum circuits. Quantum Sci. Technol. 9, 035030 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Grimsley, H. R., Mayhall, N. J., Barron, G. S., Barnes, E. & Economou, S. E. Adaptive, problem-tailored variational quantum eigensolver mitigates rough parameter landscapes and barren plateaus. npj Quantum Inf. 9, 19 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Anastasiou, P. G., Chen, Y., Mayhall, N. J., Barnes, E. & Economou, S. E. TETRIS-ADAPT-VQE: an adaptive algorithm that yields shallower, denser circuit ansätze. Phys. Rev. Res. 6, 013254 (2024).

    Article 

    Google Scholar
     

  • Van Dyke, J. S. et al. Scaling adaptive quantum simulation algorithms via operator pool tiling. Phys. Rev. Res. 6, L012030 (2024).

    Article 

    Google Scholar
     

  • Romero, A., Engel, J., Tang, H. L. & Economou, S. E. Solving nuclear structure problems with the adaptive variational quantum algorithm. Phys. Rev. C 105, 064317 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, L. et al. Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. Phys. Rev. Res. 4, 033029 (2022).

    Article 

    Google Scholar
     

  • Grant, E., Wossnig, L., Ostaszewski, M. & Benedetti, M. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019).

    Article 

    Google Scholar
     

  • Jain, N., Coyle, B., Kashefi, E. & Kumar, N. Graph neural network initialisation of quantum approximate optimisation. Quantum 6, 861 (2022).

    Article 

    Google Scholar
     

  • Skolik, A., McClean, J. R., Mohseni, M., van der Smagt, P. & Leib, M. Layerwise learning for quantum neural networks. Quant. Mach. Intell. 3, 1–11 (2021).

    Article 

    Google Scholar
     

  • Kulshrestha, A. & Safro, I. BEINIT: avoiding barren plateaus in variational quantum algorithms. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 197–203 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9951195 (IEEE, 2022).

  • Rad, A., Seif, A. & Linke, N. M. Surviving the barren plateau in variational quantum circuits with Bayesian learning initialization. Preprint at https://arxiv.org/abs/2203.02464 (2022).

  • Astrakhantsev, N., Mazzola, G., Tavernelli, I. & Carleo, G. Phenomenological theory of variational quantum ground-state preparation. Phys. Rev. Res. 5, 033225 (2023).

    Article 

    Google Scholar
     

  • Haug, T. & Kim, M. Optimal training of variational quantum algorithms without barren plateaus. Preprint at https://arxiv.org/abs/2104.14543 (2021).

  • Kashif, M., Rashid, M., Al-Kuwari, S. & Shafique, M. Alleviating barren plateaus in parameterized quantum machine learning circuits: investigating advanced parameter initialization strategies. In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE) https://ieeexplore.ieee.org/document/10546644 (IEEE 2024).

  • Shi, X. & Shang, Y. Avoiding barren plateaus via Gaussian mixture model. Preprint at https://arxiv.org/abs/2402.13501 (2024).

  • Friedrich, L. & Maziero, J. Avoiding barren plateaus with classical deep neural networks. Phys. Rev. A 106, 042433 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Rudolph, M. S. et al. Synergistic pretraining of parametrized quantum circuits via tensor networks. Nat. Commun. 14, 8367 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Marin-Sanchez, G., Gonzalez-Conde, J. & Sanz, M. Quantum algorithms for approximate function loading. Phys. Rev. Res. 5, 033114 (2023).

    Article 

    Google Scholar
     

  • Cervera-Lierta, A., Kottmann, J. S. & Aspuru-Guzik, A. The meta-variational quantum eigensolver (meta-VQE): learning energy profiles of parameterized Hamiltonians for quantum simulation. PRX Quantum 2, 020329 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Goh, M. L., Larocca, M., Cincio, L., Cerezo, M. & Sauvage, F. Lie-algebraic classical simulations for variational quantum computing. Preprint at https://arxiv.org/abs/2308.01432 (2023).

  • Brandao, F. G., Broughton, M., Farhi, E., Gutmann, S. & Neven, H. For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances. Preprint at https://arxiv.org/abs/1812.04170 (2018).

  • Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020).


    Google Scholar
     

  • Wurtz, J. & Lykov, D. Fixed-angle conjectures for the quantum approximate optimization algorithm on regular maxcut graphs. Phys. Rev. A 104, 052419 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Boulebnane, S. & Montanaro, A. Predicting parameters for the quantum approximate optimization algorithm for max-cut from the infinite-size limit. Preprint at https://arxiv.org/abs/2110.10685 (2021).

  • Galda, A., Liu, X., Lykov, D., Alexeev, Y. & Safro, I. Transferability of optimal QAOA parameters between random graphs. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 171–180 https://www.computer.org/csdl/proceedings-article/qce/2021/169100a171/1yEZ9MWWjSg (IEEE, 2021).

  • Mele, A. A., Mbeng, G. B., Santoro, G. E., Collura, M. & Torta, P. Avoiding barren plateaus via transferability of smooth solutions in a Hamiltonian variational ansatz. Phys. Rev. A 106, L060401 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, H.-Y., Sun, T.-P., Wu, Y.-C., Han, Y.-J. & Guo, G.-P. Mitigating barren plateaus with transfer-learning-inspired parameter initializations. N. J. Phys. 25, 013039 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Zhang, Z.-J., Sun, J., Yuan, X. & Yung, M.-H. Low-depth Hamiltonian simulation by an adaptive product formula. Phys. Rev. Lett. 130, 040601 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Gacon, J., Nys, J., Rossi, R., Woerner, S. & Carleo, G. Variational quantum time evolution without the quantum geometric tensor. Phys. Rev. Res. 6, 013143 (2024).

    Article 

    Google Scholar
     

  • Campos, E., Rabinovich, D., Akshay, V. & Biamonte, J. Training saturation in layerwise quantum approximate optimization. Phys. Rev. A 104, L030401 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Campos, E., Nasrallah, A. & Biamonte, J. Abrupt transitions in variational quantum circuit training. Phys. Rev. A 103, 032607 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Fitzek, D., Jonsson, R. S., Dobrautz, W. & Schäfer, C. Optimizing variational quantum algorithms with qBang: efficiently interweaving metric and momentum to navigate flat energy landscapes. Quantum 8, 1313 (2024).

    Article 

    Google Scholar
     

  • Acampora, G., Chiatto, A. & Vitiello, A. A comparison of evolutionary algorithms for training variational quantum classifiers. In 2023 IEEE Congress on Evolutionary Computation (CEC) 1–8 https://ieeexplore.ieee.org/abstract/document/10254076 (IEEE, 2023).

  • Stokes, J., Izaac, J., Killoran, N. & Carleo, G. Quantum natural gradient. Quantum 4, 269 (2020).

    Article 

    Google Scholar
     

  • Koczor, B. & Benjamin, S. C. Quantum natural gradient generalized to noisy and nonunitary circuits. Phys. Rev. A 106, 062416 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Arrasmith, A., Cerezo, M., Czarnik, P., Cincio, L. & Coles, P. J. Effect of barren plateaus on gradient-free optimization. Quantum 5, 558 (2021).

    Article 

    Google Scholar
     

  • Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).


    Google Scholar
     

  • Cai, Z. et al. Quantum error mitigation. Rev. Mod. Phys. 95, 045005 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Wang, K., Chen, Y.-A. & Wang, X. Mitigating quantum errors via truncated Neumann series. Sci. China Inf. Sci. 66, 180508 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Takagi, R., Endo, S., Minagawa, S. & Gu, M. Fundamental limits of quantum error mitigation. npj Quantum Inf. 8, 114 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Takagi, R., Tajima, H. & Gu, M. Universal sampling lower bounds for quantum error mitigation. Phys. Rev. Lett. 131, 210602 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Quek, Y., França, D. S., Khatri, S., Meyer, J. J. & Eisert, J. Exponentially tighter bounds on limitations of quantum error mitigation. Nat. Phys. 20, 1648–1658 (2024).

    Article 

    Google Scholar
     

  • Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J. & Biswas, R. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci. Technol. 3, 030502 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Gao, X., Anschuetz, E. R., Wang, S.-T., Cirac, J. I. & Lukin, M. D. Enhancing generative models via quantum correlations. Phys. Rev. X 12, 021037 (2022).


    Google Scholar
     

  • Benedetti, M. et al. A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf. 5, 45 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J.-G. & Wang, L. Differentiable learning of quantum circuit born machines. Phys. Rev. A 98, 062324 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Coyle, B., Mills, D., Danos, V. & Kashefi, E. The Born supremacy: quantum advantage and training of an Ising Born Machine. npj Quantum Inf. 6, 60 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Rudolph, M. S. et al. Trainability barriers and opportunities in quantum generative modeling. npj Quantum Inf. 10, 116 (2024).

    Article 

    Google Scholar
     

  • Zoufal, C. Generative quantum machine learning. Preprint at https://arxiv.org/abs/2111.12738 (2021).

  • Lloyd, S. & Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett. 121, 040502 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B. & Melko, R. Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018).


    Google Scholar
     

  • Coopmans, L. & Benedetti, M. On the sample complexity of quantum Boltzmann machine learning. Commun. Phys. 7, 274 (2024).

    Article 

    Google Scholar
     

  • Chang, S. Y., Thanasilp, S., Saux, B. L., Vallecorsa, S. & Grossi, M. Latent style-based quantum GAN for high-quality image generation. Preprint at https://arxiv.org/abs/2406.02668 (2024).

  • Kieferova, M., Carlos, O. M. & Wiebe, N. Quantum generative training using Rényi divergences. Preprint at https://arxiv.org/abs/2106.09567 (2021).

  • Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Thanasilp, S., Wang, S., Cerezo, M. & Holmes, Z. Exponential concentration in quantum kernel methods. Nat. Commun. 15, 5200 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Kübler, J., Buchholz, S. & Schölkopf, B. The inductive bias of quantum kernels. Adv. Neural Inf. Process. Syst. 34, 12661–12673 (2021).


    Google Scholar
     

  • Canatar, A., Peters, E., Pehlevan, C., Wild, S. M. & Shaydulin, R. Bandwidth enables generalization in quantum kernel models. Trans. Mach. Learn. Res. https://openreview.net/forum?id=A1N2qp4yAq (2023).

  • Suzuki, Y. & Li, M. Effect of alternating layered ansatzes on trainability of projected quantum kernel. Phys. Rev. A 110, 012409 (2024).

    Article 
    MathSciNet 

    Google Scholar
     

  • Suzuki, Y., Kawaguchi, H. & Yamamoto, N. Quantum Fisher kernel for mitigating the vanishing similarity issue. Quantum Sci. Technol. 9, 035050 (2024).

    Article 

    Google Scholar
     

  • Xiong, W. et al. On fundamental aspects of quantum extreme learning machines. Quant. Mach. Intell. 7, 20 (2025).

    Article 

    Google Scholar
     

  • Yu, L.-W. et al. Expressibility-induced concentration of quantum neural tangent kernels. Rep. Prog. Phys. 87, 110501 (2024).

    Article 
    MathSciNet 

    Google Scholar
     

  • Schuld, M. & Petruccione, F. Supervised Learning with Quantum Computers Vol. 17 (Springer, 2018).

  • Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Schuld, M. Supervised quantum machine learning models are kernel methods. Preprint at https://arxiv.org/abs/2101.11020 (2021).

  • Gan, B. Y., Leykam, D. & Thanasilp, S. A unified framework for trace-induced quantum kernels. Preprint at https://arxiv.org/abs/2311.13552 (2023).

  • Magann, A. B. et al. From pulses to circuits and back again: a quantum optimal control perspective on variational quantum algorithms. PRX Quantum 2, 010101 (2021).

    Article 

    Google Scholar
     

  • Ge, X., Wu, R.-B. & Rabitz, H. The optimization landscape of hybrid quantum–classical algorithms: from quantum control to NISQ applications. Annu. Rev. Control https://www.sciencedirect.com/science/article/pii/S1367578822000840 (2022).

  • Broers, L. & Mathey, L. Mitigated barren plateaus in the time-nonlocal optimization of analog quantum-algorithm protocols. Phys. Rev. Res. 6, 013076 (2024).

    Article 

    Google Scholar
     

  • Tao, H.-X., Hu, J. & Wu, R.-B. Unleashing the expressive power of pulse-based quantum neural networks. Preprint at https://arxiv.org/abs/2402.02880 (2024).

  • de Keijzer, R., Tse, O. & Kokkelmans, S. Pulse based variational quantum optimal control for hybrid quantum computing. Quantum 7, 908 (2023).

    Article 

    Google Scholar
     

  • Pecci, G., Wang, R., Torta, P., Mbeng, G. B. & Santoro, G. Beyond quantum annealing: optimal control solutions to maxcut problems. Quantum Sci. Technol. 9, 045013 (2024).

    Article 

    Google Scholar
     

  • Martín, E. C., Plekhanov, K. & Lubasch, M. Barren plateaus in quantum tensor network optimization. Quantum 7, 974 (2023).

    Article 

    Google Scholar
     

  • Feldman, V. Statistical Query Learning, 2090–2095. https://doi.org/10.1007/978-1-4939-2864-4_401 (Springer New York, 2016).

  • Arunachalam, S., Grilo, A. B. & Yuen, H. Quantum statistical query learning. Preprint at https://arxiv.org/abs/2002.08240 (2020).

  • Anshu, A. & Arunachalam, S. A survey on the complexity of learning quantum states. Nat. Rev. Phys. 6, 59–69 (2024).

    Article 

    Google Scholar
     

  • Angrisani, A. Learning unitaries with quantum statistical queries. Preprint at https://arxiv.org/abs/2310.02254 (2023).

  • Wadhwa, C. & Doosti, M. Learning quantum processes with quantum statistical queries. Preprint at https://arxiv.org/abs/2310.02075 (2023).

  • Nietner, A. Unifying (quantum) statistical and parametrized (quantum) algorithms. Preprint at https://arxiv.org/abs/2310.17716 (2023).

  • Nietner, A. et al. On the average-case complexity of learning output distributions of quantum circuits. Preprint at https://arxiv.org/abs/2305.05765 (2023).

  • Anschuetz, E. R. & Kiani, B. T. Quantum variational algorithms are swamped with traps. Nat. Commun. 13, 7760 (2022).

    Article 
    ADS 

    Google Scholar
     

  • You, X. & Wu, X. Exponentially many local minima in quantum neural networks. In International Conference on Machine Learning 12144–12155. https://proceedings.mlr.press/v139/you21c.html (PMLR, 2021).

  • Huang, H.-Y. et al. Learning shallow quantum circuits. In Proc. 56th Annual ACM Symposium on Theory of Computing 1343–1351. https://dl.acm.org/doi/10.1145/3618260.3649722 (2024).

  • Nemkov, N. A., Kiktenko, E. O. & Fedorov, A. K. Barren plateaus are swamped with traps. Phys. Rev. A 111, 012441 (2025).

    Article 

    Google Scholar
     

  • Anschuetz, E. R. A unified theory of quantum neural network loss landscapes. Preprint at https://arxiv.org/abs/2408.11901 (2024).

  • Tikku, A. & Kim, I. H. Circuit depth versus energy in topologically ordered systems. Preprint at https://arxiv.org/abs/2210.06796 (2022).

  • Basheer, A., Feng, Y., Ferrie, C. & Li, S. Alternating layered variational quantum circuits can be classically optimized efficiently using classical shadows. Proceedings of the AAAI Conference on Artificial Intelligence 37, 6 (AAAI, 2023).

  • Jerbi, S. et al. The power and limitations of learning quantum dynamics incoherently. Preprint at https://arxiv.org/abs/2303.12834 (2023).

  • Somma, R., Barnum, H., Ortiz, G. & Knill, E. Efficient solvability of Hamiltonians and limits on the power of some quantum computational models. Phys. Rev. Lett. 97, 190501 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Galitski, V. Quantum-to-classical correspondence and Hubbard–Stratonovich dynamical systems: a Lie-algebraic approach. Phys. Rev. A 84, 012118 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Anschuetz, E. R., Bauer, A., Kiani, B. T. & Lloyd, S. Efficient classical algorithms for simulating symmetric quantum systems. Quantum 7, 1189 (2023).

    Article 

    Google Scholar
     

  • Angrisani, A. et al. Classically estimating observables of noiseless quantum circuits. Preprint at https://arxiv.org/abs/2409.01706 (2024).

  • Rudolph, M. S., Fontana, E., Holmes, Z. & Cincio, L. Classical surrogate simulation of quantum systems with lowesa. Preprint at https://arxiv.org/abs/2308.09109 (2023).

  • Fontana, E., Rudolph, M. S., Duncan, R., Rungger, I. & Cîrstoiu, C. Classical simulations of noisy variational quantum circuits. Preprint at https://arxiv.org/abs/2306.05400 (2023).

  • Lerch, S. et al. Efficient quantum-enhanced classical simulation for patches of quantum landscapes. Preprint at https://arxiv.org/abs/2411.19896 (2024).

  • Bharti, K. & Haug, T. Iterative quantum-assisted eigensolver. Phys. Rev. A 104, L050401 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bharti, K. & Haug, T. Quantum-assisted simulator. Phys. Rev. A 104, 042418 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gil-Fuster, E., Gyurik, C., Pérez-Salinas, A. & Dunjko, V. On the relation between trainability and dequantization of variational quantum learning models. Preprint at https://arxiv.org/abs/2406.07072 (2024).

  • Parrish, R. M., Hohenstein, E. G., McMahon, P. L. & Martínez, T. J. Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev. Lett. 122, 230401 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Jerbi, S., Gyurik, C., Marshall, S. C., Molteni, R. & Dunjko, V. Shadows of quantum machine learning. Nat. Commun. 15, 5676 (2024).

    Article 

    Google Scholar
     

  • Gyurik, C., Molteni, R. & Dunjko, V. Limitations of measure-first protocols in quantum machine learning. Preprint at https://arxiv.org/abs/2311.12618 (2023).

  • Elben, A. et al. The randomized measurement toolbox. Nat. Rev. Phys. 5, 1 (2023).


    Google Scholar
     

  • White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Sharir, O., Levine, Y., Wies, N., Carleo, G. & Shashua, A. Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Phys. Rev. Lett. 124, 020503 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431 (2017).

    Article 

    Google Scholar
     

  • Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018).

    Article 

    Google Scholar
     

  • Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proc. Thirteenth International Conference on Artificial Intelligence and Statistics 249–256. https://proceedings.mlr.press/v9/glorot10a (JMLR Workshop and Conference Proceedings, 2010).

  • Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning 448–456. https://proceedings.mlr.press/v37/ioffe15.html (PMLR, 2015).

  • Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. Preprint at https://arxiv.org/abs/1607.06450 (2016).

  • Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proc. 27th International Conference on Machine Learning (ICML-10) 807–814. https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf (2010).

  • Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6, 107–116 (1998).

    Article 

    Google Scholar
     

  • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article 

    Google Scholar
     

  • Narkhede, M. V., Bartakke, P. P. & Sutaone, M. S. A review on weight initialization strategies for neural networks. Artif. Intell. Rev. 55, 291–322 (2022).

    Article 

    Google Scholar
     

  • Chen, M., Pennington, J. & Schoenholz, S. Dynamical isometry and a mean field theory of RNNs: gating enables signal propagation in recurrent neural networks. In Proc. 35th International Conference on Machine Learning (eds Dy, J. & Krause, A.) Vol. 80 of Proceedings of Machine Learning Research 873–882. https://proceedings.mlr.press/v80/chen18i.html (PMLR, 2018).

  • Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S. & Pennington, J. Dynamical isometry and a mean field theory of CNNs: how to train 10,000-layer vanilla convolutional neural networks. In Proc. 35th International Conference on Machine Learning (eds Dy, J. & Krause, A.) Vol. 80 of Proceedings of Machine Learning Research 5393–5402. https://proceedings.mlr.press/v80/xiao18a.html (PMLR, 2018).

  • Saxe, A. M., McClelland, J. L. & Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Preprint at https://doi.org/10.48550/arXiv.1312.6120 (2013).

  • Baird, L. & Moore, A. Gradient descent for general reinforcement learning. Adv. Neural Inform. Process. Syst. 11 https://proceedings.neurips.cc/paper/1998/hash/af5afd7f7c807171981d443ad4f4f648-Abstract.html (1998).

  • Salimans, T., Ho, J., Chen, X., Sidor, S. & Sutskever, I. Evolution strategies as a scalable alternative to reinforcement learning. Preprint at https://arxiv.org/abs/1703.03864 (2017).

  • Standard Deviation. https://en.wikipedia.org/wiki/Standard_deviation#Sample_standard_deviation.

  • Zeier, R. & Schulte-Herbrüggen, T. Symmetry principles in quantum systems theory. J. Math. Phys. 52, 113510 (2011).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Wierichs, D., East, R. D., Larocca, M., Cerezo, M. & Killoran, N. Symmetric derivatives of parametrized quantum circuits. Preprint at https://arxiv.org/abs/2312.06752 (2023).