Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021). Review on variational quantum algorithms presents details for newcomers to the field.
Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022). Review on variational quantum algorithms presents details for newcomers to the field.
Endo, S., Cai, Z., Benjamin, S. C. & Yuan, X. Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 90, 032001 (2021).
Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56, 172–185 (2015). Pedagogical introduction to quantum machine learning.
Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L. & Coles, P. J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. https://www.nature.com/articles/s43588-022-00311-3 (2022).
Di Meglio, A. et al. Quantum computing for high-energy physics: state of the art and challenges. PRX Quantum 5, 037001 (2024).
McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018). Seminal work in which the barren plateaus phenomenon is discovered.
Qi, H., Wang, L., Zhu, H., Gani, A. & Gong, C. The barren plateaus of quantum neural networks: review, taxonomy and trends. Quantum Inf. Process. 22, 435 (2023).
Arrasmith, A., Holmes, Z., Cerezo, M. & Coles, P. J. Equivalence of quantum barren plateaus to cost concentration and narrow gorges. Quantum Sci. Technol. 7, 045015 (2022).
Cerezo, M. et al. Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing. Preprint at https://arxiv.org/abs/2312.09121 (2023). This work presents a deep connection between absence of barren plateaus and classical simulability.
Bittel, L. & Kliesch, M. Training variational quantum algorithms is NP-hard. Phys. Rev. Lett. 127, 120502 (2021). In this work, it is shown that training variational quantum algorithms can be, in the worst case, NP-hard.
Fontana, E., Cerezo, M., Arrasmith, A., Rungger, I. & Coles, P. J. Non-trivial symmetries in quantum landscapes and their resilience to quantum noise. Quantum 6, 804 (2022).
Anschuetz, E. R. & Kiani, B. T. Beyond barren plateaus: quantum variational algorithms are swamped with traps. Nat. Commun. 13, 7760 (2022). This work showcases the problems of local mínima in variational quantum computing.
Anschuetz, E. R. Critical points in quantum generative models. In International Conference on Learning Representations https://openreview.net/forum?id=2f1z55GVQN (2022).
Larocca, M. et al. Diagnosing barren plateaus with tools from quantum optimal control. Quantum 6, 824 (2022).
Bermejo, P., Aizpurua, B. & Orús, R. Improving gradient methods via coordinate transformations: applications to quantum machine learning. Phys. Rev. Res. 6, 023069 (2024).
Nádori, J., Morse, G., Majnay-Takács, Z., Zimborás, Z. & Rakyta, P. Line search strategy for navigating through barren plateaus in quantum circuit training. Preprint at https://arxiv.org/abs/2402.05227 (2024).
Sim, S., Johnson, P. D. & Aspuru-Guzik, A. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2, 1900070 (2019).
Akshay, V., Philathong, H., Morales, M. E. & Biamonte, J. D. Reachability deficits in quantum approximate optimization. Phys. Rev. Lett. 124, 090504 (2020).
Miao, Q. & Barthel, T. Equivalence of cost concentration and gradient vanishing for quantum circuits: an elementary proof in the Riemannian formulation. Quantum Sci. Technol. 9, 045039 (2024).
Cerezo, M. & Coles, P. J. Higher order derivatives of quantum neural networks with barren plateaus. Quantum Sci. Technol. 6, 035006 (2021).
Puig, R., Drudis, M., Thanasilp, S. & Holmes, Z. Variational quantum simulation: a case study for understanding warm starts. PRX Quantum 6, 010317 (2025).
Wang, S. et al. Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun. 12, 6961 (2021). Here, it is shown that noise can induce barren plateaus and deterministic exponential concentration.
Diaz, N. L., García-Martín, D., Kazi, S., Larocca, M. & Cerezo, M. Showcasing a barren plateau theory beyond the dynamical lie algebra. Preprint at https://arxiv.org/abs/2310.11505 (2023).
Leone, L., Oliviero, S. F., Cincio, L. & Cerezo, M. On the practical usefulness of the hardware efficient ansatz. Quantum 8, 1395 (2024).
Thanasilp, S., Wang, S., Nghiem, N. A., Coles, P. & Cerezo, M. Subtleties in the trainability of quantum machine learning models. Quant. Mach. Intell. 5, 21 (2023).
Cybulski, J. L. & Nguyen, T. Impact of barren plateaus countermeasures on the quantum neural network capacity to learn. Quantum Inf. Process. 22, 442 (2023).
Pérez-Salinas, A., Wang, H. & Bonet-Monroig, X. Analyzing variational quantum landscapes with information content. npj Quantum Inf. 10, 27 (2024).
Zhang, H.-K., Zhu, C. & Wang, X. Predicting quantum learnability from landscape fluctuation. Preprint at https://arxiv.org/abs/2406.11805 (2024).
Sack, S. H., Medina, R. A., Michailidis, A. A., Kueng, R. & Serbyn, M. Avoiding barren plateaus using classical shadows. PRX Quantum 3, 020365 (2022).
Okumura, S. & Ohzeki, M. Fourier coefficient of parameterized quantum circuits and barren plateau problem. Preprint at https://arxiv.org/abs/2309.06740 (2023).
Nemkov, N. A., Kiktenko, E. O. & Fedorov, A. K. Fourier expansion in variational quantum algorithms. Phys. Rev. A 108, 032406 (2023).
Stęchły, M., Gao, L., Yogendran, B., Fontana, E. & Rudolph, M. Connecting the Hamiltonian structure to the QAOA energy and Fourier landscape structure. Preprint at https://arxiv.org/abs/2305.13594 (2023).
Dankert, C., Cleve, R., Emerson, J. & Livine, E. Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009).
Sharma, K., Cerezo, M., Cincio, L. & Coles, P. J. Trainability of dissipative perceptron-based quantum neural networks. Phys. Rev. Lett. 128, 180505 (2022).
Patti, T. L., Najafi, K., Gao, X. & Yelin, S. F. Entanglement devised barren plateau mitigation. Phys. Rev. Res. 3, 033090 (2021).
Marrero, C. O., Kieferová, M. & Wiebe, N. Entanglement-induced barren plateaus. PRX Quantum 2, 040316 (2021).
Holmes, Z. et al. Barren plateaus preclude learning scramblers. Phys. Rev. Lett. 126, 190501 (2021).
Ragone, M. et al. A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits. Nat. Commun. 15, 7172 (2024). This is one of the two concurrent works that present a general theory for characterizing barren plateaus.
Fontana, E. et al. Characterizing barren plateaus in quantum ansätze with the adjoint representation. Nat. Commun. 15, 7171 (2024).
Schatzki, L., Larocca, M., Nguyen, Q. T., Sauvage, F. & Cerezo, M. Theoretical guarantees for permutation-equivariant quantum neural networks. npj Quantum Inf. 10, 12 (2024).
Liu, J., Lin, Z. & Jiang, L. Laziness, barren plateau, and noise in machine learning. Mach. Learn. Sci. Technol. 5, 015058 (2024).
West, M. T., Heredge, J., Sevior, M. & Usman, M. Provably trainable rotationally equivariant quantum machine learning. PRX Quantum 5, 030320 (2024).
García-Martín, D., Larocca, M. & Cerezo, M. Deep quantum neural networks form Gaussian processes. Preprint at https://arxiv.org/abs/2305.09957 (2023).
Mele, A. A. Introduction to Haar measure tools in quantum information: a beginner’s tutorial. Quantum 8, 1340 (2024).
Ragone, M. et al. Representation theory for geometric quantum machine learning. Preprint at https://arxiv.org/abs/2210.07980 (2022).
Cerezo, M., Sone, A., Volkoff, T., Cincio, L. & Coles, P. J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12, 1791 (2021).
Uvarov, A. & Biamonte, J. D. On barren plateaus and cost function locality in variational quantum algorithms. J. Phys. A Math. Theor. 54, 245301 (2021).
Pesah, A. et al. Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11, 041011 (2021).
Heyraud, V., Li, Z., Donatella, K., Boité, A. L. & Ciuti, C. Efficient estimation of trainability for variational quantum circuits. PRX Quantum 4, 040335 (2023).
Liu, Z., Yu, L.-W., Duan, L.-M. & Deng, D.-L. The presence and absence of barren plateaus in tensor-network based machine learning. Phys. Rev. Lett. 129, 270501 (2022).
Barthel, T. & Miao, Q. Absence of barren plateaus and scaling of gradients in the energy optimization of isometric tensor network states. Preprint at https://arxiv.org/abs/2304.00161 (2023).
Miao, Q. & Barthel, T. Isometric tensor network optimization for extensive Hamiltonians is free of barren plateaus. Phys. Rev. A 109, L050402 (2024).
Garcia, R. J., Zhao, C., Bu, K. & Jaffe, A. Barren plateaus from learning scramblers with local cost functions. J. High Energy Phys. 2023, 1–79 (2023).
Letcher, A., Woerner, S. & Zoufal, C. Tight and efficient gradient bounds for parameterized quantum circuits. Quantum 8, 1484 (2024).
Arrazola, J. M. et al. Universal quantum circuits for quantum chemistry. Quantum 6, 742 (2022).
Zhang, H.-K., Liu, S. & Zhang, S.-X. Absence of barren plateaus in finite local-depth circuits with long-range entanglement. Phys. Rev. Lett. 132, 150603 (2024).
García-Martín, D., Braccia, P. & Cerezo, M. Architectures and random properties of symplectic quantum circuits. Preprint at https://arxiv.org/abs/2405.10264 (2024).
Deneris, A. E., Bermejo, P., Braccia, P., Cincio, L. & Cerezo, M. Exact spectral gaps of random one-dimensional quantum circuits. Preprint at https://arxiv.org/abs/2408.11201 (2024).
Napp, J. Quantifying the barren plateau phenomenon for a model of unstructured variational ansätze. Preprint at https://arxiv.org/abs/2203.06174 (2022).
Braccia, P., Bermejo, P., Cincio, L. & Cerezo, M. Computing exact moments of local random quantum circuits via tensor networks. Quant. Mach. Intell. 6, 54 (2024).
Hu, H.-Y. et al. Demonstration of robust and efficient quantum property learning with shallow shadows. Preprint at https://arxiv.org/abs/2402.17911 (2024).
Zhao, C. & Gao, X.-S. Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus. Quantum 5, 466 (2021).
Zhang, K., Liu, L., Hsieh, M.-H. & Tao, D. Escaping from the barren plateau via Gaussian initializations in deep variational quantum circuits. Adv. Neural Inf. Process. Syst. https://openreview.net/forum?id=jXgbJdQ2YIy (2022).
Wang, Y., Qi, B., Ferrie, C. & Dong, D. Trainability enhancement of parameterized quantum circuits via reduced-domain parameter initialization. Phys. Rev. Appl. 22, 054005 (2024).
Park, C.-Y. & Killoran, N. Hamiltonian variational ansatz without barren plateaus. Quantum 8, 1239 (2024).
Park, C.-Y., Kang, M. & Huh, J. Hardware-efficient ansatz without barren plateaus in any depth. Preprint at https://arxiv.org/abs/2403.04844 (2024).
Sannia, A., Tacchino, F., Tavernelli, I., Giorgi, G. L. & Zambrini, R. Engineered dissipation to mitigate barren plateaus. npj Quantum Inf. 10, 81 (2024).
Liu, J., Wilde, F., Mele, A. A., Jiang, L. & Eisert, J. Stochastic noise can be helpful for variational quantum algorithms. Preprint at https://arxiv.org/abs/2210.06723 (2022).
Schumann, M., Wilhelm, F. K. & Ciani, A. Emergence of noise-induced barren plateaus in arbitrary layered noise models. Quantum Sci. Technol. 9, 045019 (2024).
Singkanipa, P. & Lidar, D. A. Beyond unital noise in variational quantum algorithms: noise-induced barren plateaus and fixed points. Quantum 9, 1617 (2025).
Bremner, M. J., Mora, C. & Winter, A. Are random pure states useful for quantum computation? Phys. Rev. Lett. 102, 190502 (2009).
Gross, D., Flammia, S. T. & Eisert, J. Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009).
Yang, G. et al. Tensor programs v: tuning large neural networks via zero-shot hyperparameter transfer. Adv. Neural Inf. Process. Syst. 34, 17084–17097 (2021).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Horgan, J. Scott Aaronson answers every ridiculously big question throw at him. Sci. Am. https://blogs.scientificamerican.com/cross-check/scott-aaronson-answers-every-ridiculously-big-question-i-throw-at-him (2016).
Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. https://www.nature.com/articles/s41567-021-01287-z (2021).
Jäger, J. & Krems, R. V. Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines. Nat. Commun. 14, 576 (2023).
Holmes, Z., Sharma, K., Cerezo, M. & Coles, P. J. Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3, 010313 (2022).
Friedrich, L. & Maziero, J. Quantum neural network cost function concentration dependency on the parametrization expressivity. Sci. Rep. 13, 9978 (2023).
Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).
Haug, T., Bharti, K. & Kim, M. S. Capacity and quantum geometry of parametrized quantum circuits. PRX Quantum 2, 040309 (2021).
Larocca, M., Ju, N., García-Martín, D., Coles, P. J. & Cerezo, M. Theory of overparametrization in quantum neural networks. Nat. Comput. Sci. 3, 542–551 (2023).
Somma, R., Ortiz, G., Barnum, H., Knill, E. & Viola, L. Nature and measure of entanglement in quantum phase transitions. Phys. Rev. A 70, 042311 (2004).
Somma, R. D. Quantum computation, complexity, and many-body physics. Preprint at https://arxiv.org/abs/quant-ph/0512209 (2005).
Khatri, S. et al. Quantum-assisted quantum compiling. Quantum 3, 140 (2019).
Uvarov, A., Biamonte, J. D. & Yudin, D. Variational quantum eigensolver for frustrated quantum systems. Phys. Rev. B 102, 075104 (2020).
Kashif, M. & Al-Kuwari, S. The impact of cost function globality and locality in hybrid quantum neural networks on NISQ devices. Mach. Learn. Sci. Technol. 4, 015004 (2023).
Leadbeater, C., Sharrock, L., Coyle, B. & Benedetti, M. F-divergences and cost function locality in generative modelling with quantum circuits. Entropy 23, 1281 (2021).
Cerezo, M., Sharma, K., Arrasmith, A. & Coles, P. J. Variational quantum state eigensolver. npj Quantum Inf. 8, 1–11 (2022).
Kiani, B. T., De Palma, G., Marvian, M., Liu, Z.-W. & Lloyd, S. Learning quantum data with the quantum earth mover’s distance. Quantum Sci. Technol. 7, 045002 (2022).
Zambrano, L., Muñoz-Moller, A. D., Muñoz, M., Pereira, L. & Delgado, A. Avoiding barren plateaus in the variational determination of geometric entanglement. Quantum Sci. Technol. 9, 025016 (2024).
Ogunkoya, O., Morris, K. & Kürkçüoglu, D. M. Investigating parameter trainability in the snap-displacement protocol of a qudit system. Preprint at https://arxiv.org/abs/2309.14942 (2023).
Zhang, B. & Zhuang, Q. Energy-dependent barren plateau in bosonic variational quantum circuits. Quantum Sci. Technol. 10, 015009 (2024).
Wiersema, R., Zhou, C., Carrasquilla, J. F. & Kim, Y. B. Measurement-induced entanglement phase transitions in variational quantum circuits. SciPost Phys. 14, 147 (2023).
Shaydulin, R. & Wild, S. M. Importance of kernel bandwidth in quantum machine learning. Phys. Rev. A 106, 042407 (2022).
Kashif, M. & Al-Kuwari, S. The unified effect of data encoding, ansatz expressibility and entanglement on the trainability of HQNNs. Int. J. Parallel Emergent Distrib. Syst. 38, 362–400 (2023).
Das, S., Martina, S. & Caruso, F. The role of data embedding in equivariant quantum convolutional neural networks. Quant. Mach. Intell. 6, 82 (2024).
Mhiri, H. et al. Constrained and vanishing expressivity of quantum Fourier models. Preprint at https://arxiv.org/abs/2403.09417 (2024).
Stilck França, D. & Garcia-Patron, R. Limitations of optimization algorithms on noisy quantum devices. Nat. Phys. 17, 1221–1227 (2021).
De Palma, G., Marvian, M., Rouzé, C. & França, D. S. Limitations of variational quantum algorithms: a quantum optimal transport approach. PRX Quantum 4, 010309 (2023).
Crognaletti, G., Grossi, M. & Bassi, A. Estimates of loss function concentration in noisy parametrized quantum circuits. Preprint at https://arxiv.org/abs/2410.01893 (2024).
Mele, A. A. et al. Noise-induced shallow circuits and absence of barren plateaus. Preprint at https://arxiv.org/abs/2403.13927 (2024).
Fefferman, B., Ghosh, S., Gullans, M., Kuroiwa, K. & Sharma, K. Effect of non-unital noise on random circuit sampling. PRX Quantum 5, 030317 (2024).
Deshpande, A. et al. Dynamic parameterized quantum circuits: expressive and barren-plateau free. Preprint at https://arxiv.org/abs/2411.05760 (2024).
Wilde, M. M. Quantum Information Theory (Cambridge Univ. Press, 2013).
Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).
He, Z., Li, L., Zheng, S., Li, Y. & Situ, H. Variational quantum compiling with double q-learning. N. J. Phys. 23, 033002 (2021).
Moro, L., Paris, M. G. A., Restelli, M. & Prati, E. Quantum compiling by deep reinforcement learning. Commun. Phys. 4, 178 (2021).
Beer, K. et al. Training deep quantum neural networks. Nat. Commun. 11, 808 (2020).
Buonaiuto, G., Gargiulo, F., De Pietro, G., Esposito, M. & Pota, M. The effects of quantum hardware properties on the performances of variational quantum learning algorithms. Quant. Mach. Intell. 6, 9 (2024).
Liu, X., Liu, G., Zhang, H.-K., Huang, J. & Wang, X. Mitigating barren plateaus of variational quantum eigensolvers. IEEE Trans. Quant. Eng. 1–19 https://ieeexplore.ieee.org/abstract/document/10485449 (2024).
Zhang, H.-K., Zhu, C., Liu, G. & Wang, X. Exponential hardness of optimization from the locality in quantum neural networks. In Proc. AAAI Conference on Artificial Intelligence Vol. 38, 16741–16749 https://ojs.aaai.org/index.php/AAAI/article/view/29614 (2024).
Wecker, D., Hastings, M. B. & Troyer, M. Progress towards practical quantum variational algorithms. Phys. Rev. A 92, 042303 (2015).
Wiersema, R. et al. Exploring entanglement and optimization within the Hamiltonian variational ansatz. PRX Quant. 1, 020319 (2020).
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).
Wiersema, R., Kökcü, E., Kemper, A. F. & Bakalov, B. N. Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies. npj Quantum Inf. 10, 110 (2024).
Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).
Hadfield, S. et al. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 34 (2019).
Bärtschi, A. & Eidenbenz, S. Grover mixers for QAOA: shifting complexity from mixer design to state preparation. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) 72–82 https://www.computer.org/csdl/proceedings-article/qce/2020/896900a072/1p2VnUCmpYA (IEEE, 2020).
Fuchs, F. G., Lye, K. O., Møll Nilsen, H., Stasik, A. J. & Sartor, G. Constraint preserving mixers for the quantum approximate optimization algorithm. Algorithms 15, 202 (2022).
Tate, R., Moondra, J., Gard, B., Mohler, G. & Gupta, S. Warm-started QAOA with custom mixers provably converges and computationally beats Goemans–Williamson’s max-cut at low circuit depths. Quantum 7, 1121 (2023).
Zhang, B., Sone, A. & Zhuang, Q. Quantum computational phase transition in combinatorial problems. npj Quantum Inf. 8, 87 (2022).
Kazi, S. et al. Analyzing the quantum approximate optimization algorithm: ansätze, symmetries, and Lie algebras. Preprint at https://arxiv.org/abs/2410.05187 (2024).
Crooks, G. E. Performance of the quantum approximate optimization algorithm on the maximum cut problem. Preprint at https://arxiv.org/abs/1811.08419 (2018).
Boulebnane, S. & Montanaro, A. Solving Boolean satisfiability problems with the quantum approximate optimization algorithm. PRX Quantum 5, 030348 (2024).
Montanaro, A. & Zhou, L. Quantum speedups in solving near-symmetric optimization problems by low-depth QAOA. Preprint at https://arxiv.org/abs/2411.04979 (2024).
Herrman, R., Lotshaw, P. C., Ostrowski, J., Humble, T. S. & Siopsis, G. Multi-angle quantum approximate optimization algorithm. Sci. Rep. 12, 1–10 (2022).
Aguilar, G., Cichy, S., Eisert, J. & Bittel, L. Full classification of Pauli Lie algebras Preprint at https://arxiv.org/abs/2408.00081 (2024).
Chapman, A. & Flammia, S. T. Characterization of solvable spin models via graph invariants. Quantum 4, 278 (2020).
Kökcü, E., Wiersema, R., Kemper, A. F. & Bakalov, B. N. Classification of dynamical Lie algebras generated by spin interactions on undirected graphs. Preprint at https://arxiv.org/abs/2409.19797 (2024).
Haah, J., Liu, Y. & Tan, X. Efficient approximate unitary designs from random Pauli rotations. In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS) 463–475 (IEEE, 2024).
Zhou, N.-R., Liu, X.-X., Chen, Y.-L. & Du, N.-S. Quantum k-nearest-neighbor image classification algorithm based on K-L transform. Int. J. Theor. Phys. 60, 1209–1224 (2021).
Chai, Y. et al. Shortcuts to the quantum approximate optimization algorithm. Phys. Rev. A 105, 042415 (2022).
Chandarana, P. et al. Digitized-counterdiabatic quantum approximate optimization algorithm. Phys. Rev. Res. 4, 013141 (2022).
Vizzuso, M., Passarelli, G., Cantele, G. & Lucignano, P. Convergence of digitized-counterdiabatic QAOA: circuit depth versus free parameters. N. J. Phys. 26, 013002 (2024).
Shaydulin, R., Lotshaw, P. C., Larson, J., Ostrowski, J. & Humble, T. S. Parameter transfer for quantum approximate optimization of weighted maxcut. ACM Trans. Quantum Comput. 4, 115 (2023).
Farhi, E., Goldstone, J., Gutmann, S. & Zhou, L. The quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. Quantum 6, 759 (2022).
Taube, A. G. & Bartlett, R. J. New perspectives on unitary coupled-cluster theory. Int. J. Quantum Chem. 106, 3393–3401 (2006).
Lee, J., Huggins, W. J., Head-Gordon, M. & Whaley, K. B. Generalized unitary coupled cluster wave functions for quantum computation. J. Chem. Theory Comput. 15, 311–324 (2018).
Mao, R., Tian, G. & Sun, X. Towards determining the presence of barren plateaus in some chemically inspired variational quantum algorithms. Commun. Phys. 7, 342 (2024).
Bermejo, P. et al. Quantum convolutional neural networks are (effectively) classically simulable. Preprint at https://arxiv.org/abs/2408.12739 (2024).
Cichy, S., Faehrmann, P. K., Khatri, S. & Eisert, J. Perturbative gadgets for gate-based quantum computing: nonrecursive constructions without subspace restrictions. Phys. Rev. A 109, 052624 (2024).
Kiani, B. T., Lloyd, S. & Maity, R. Learning unitaries by gradient descent. Preprint at https://arxiv.org/abs/2001.11897 (2020).
Rajakumar, J., Golden, J., Bärtschi, A. & Eidenbenz, S. Trainability barriers in low-depth QAOA landscapes. In Proc. 21st ACM International Conference on Computing Frontiers, CF ’24, 199–206 https://doi.org/10.1145/3649153.3649204 (Association for Computing Machinery, 2024).
Marshall, S. C., Gyurik, C. & Dunjko, V. High dimensional quantum machine learning with small quantum computers. Quantum 7, 1078 (2023).
Zhang, K., Hsieh, M.-H., Liu, L. & Tao, D. Toward trainability of quantum neural networks. Preprint at https://arxiv.org/abs/2011.06258 (2020).
Larocca, M. et al. Group-invariant quantum machine learning. PRX Quantum 3, 030341 (2022).
Nguyen, Q. T. et al. Theory for equivariant quantum neural networks. PRX Quantum 5, 020328 (2024).
Meyer, J. J. et al. Exploiting symmetry in variational quantum machine learning. PRX Quantum 4, 010328 (2023).
Skolik, A., Cattelan, M., Yarkoni, S., Bäck, T. & Dunjko, V. Equivariant quantum circuits for learning on weighted graphs. npj Quantum Inf. 9, 47 (2023).
Volkoff, T. & Coles, P. J. Large gradients via correlation in random parameterized quantum circuits. Quantum Sci. Technol. 6, 025008 (2021).
Sauvage, F., Larocca, M., Coles, P. J. & Cerezo, M. Building spatial symmetries into parameterized quantum circuits for faster training. Quantum Sci. Technol. 9, 015029 (2024).
Kazi, S., Larocca, M. & Cerezo, M. On the universality of sn-equivariant k-body gates. N. J. Phys. 26, 053030 (2024).
Monbroussou, L., Landman, J., Grilo, A. B., Kukla, R. & Kashefi, E. Trainability and expressivity of Hamming-weight preserving quantum circuits for machine learning. Preprint at https://arxiv.org/abs/2309.15547 (2023).
Raj, S. et al. Quantum deep hedging. Quantum 7, 1191 (2023).
Lee, J., Magann, A. B., Rabitz, H. A. & Arenz, C. Progress toward favorable landscapes in quantum combinatorial optimization. Phys. Rev. A 104, 032401 (2021).
Jozsa, R. & Miyake, A. Matchgates and classical simulation of quantum circuits. Proc. R. Soc. A Math. Phys. Eng. Sci. 464, 3089–3106 (2008).
Wan, K., Huggins, W. J., Lee, J. & Babbush, R. Matchgate shadows for fermionic quantum simulation. Commun. Math. Phys. 404, 629 (2023).
De Melo, F., Ćwikliński, P. & Terhal, B. M. The power of noisy fermionic quantum computation. N. J. Phys. 15, 013015 (2013).
Oszmaniec, M., Dangniam, N., Morales, M. E. & Zimborás, Z. Fermion sampling: a robust quantum computational advantage scheme using fermionic linear optics and magic input states. PRX Quantum 3, 020328 (2022).
Matos, G., Self, C. N., Papić, Z., Meichanetzidis, K. & Dreyer, H. Characterization of variational quantum algorithms using free fermions. Quantum 7, 966 (2023).
Diaz, N. L. et al. Parallel-in-time quantum simulation via Page and Wootters quantum time. Preprint at https://arxiv.org/abs/2308.12944 (2023).
Kökcü, E. et al. Fixed depth Hamiltonian simulation via Cartan decomposition. Phys. Rev. Lett. 129, 070501 (2022).
Volkoff, T. J. Efficient trainability of linear optical modules in quantum optical neural networks. J. Russ. Laser Res. 42, 250–260 (2021).
Volkoff, T., Holmes, Z. & Sornborger, A. Universal compiling and (no-)free-lunch theorems for continuous-variable quantum learning. PRX Quantum 2, 040327 (2021).
Arjovsky, M., Shah, A. & Bengio, Y. Unitary evolution recurrent neural networks. In International Conference on Machine Learning 1120–1128. https://proceedings.mlr.press/v48/arjovsky16.html (PMLR, 2016).
Jing, L. et al. Tunable efficient unitary neural networks (EUNN) and their application to RNNs. In International Conference on Machine Learning 1733–1741. https://proceedings.mlr.press/v70/jing17a.html (PMLR, 2017).
Bilkis, M., Cerezo, M., Verdon, G., Coles, P. J. & Cincio, L. A semi-agnostic ansatz with variable structure for variational quantum algorithms. Quant. Mach. Intell. 5, 43 (2023).
Du, Y., Huang, T., You, S., Hsieh, M.-H. & Tao, D. Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers. npj Quantum Inf. 8, 62 (2022).
Grimsley, H. R., Economou, S. E., Barnes, E. & Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10, 3007 (2019).
Tang, H. L. et al. qubit-ADAPT-VQE: an adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor. PRX Quantum 2, 020310 (2021).
Sim, S., Romero, J., Gonthier, J. F. & Kunitsa, A. A. Adaptive pruning-based optimization of parameterized quantum circuits. Quantum Sci. Technol. 6, 025019 (2021).
Zhang, Z.-J., Kyaw, T. H., Kottmann, J., Degroote, M. & Aspuru-Guzik, A. Mutual information-assisted adaptive variational quantum eigensolver. Quantum Sci. Technol. https://iopscience.iop.org/article/10.1088/2058-9565/abdca4 (2021).
Tkachenko, N. V. et al. Correlation-informed permutation of qubits for reducing ansatz depth in VQE. PRX Quantum 2, 020337 (2021).
Claudino, D., Wright, J., McCaskey, A. J. & Humble, T. S. Benchmarking adaptive variational quantum eigensolvers. Front. Chem. 8, 1152 (2020).
Rattew, A. G., Hu, S., Pistoia, M., Chen, R. & Wood, S. A domain-agnostic, noise-resistant, hardware-efficient evolutionary variational quantum eigensolver. Preprint at https://arxiv.org/abs/1910.09694 (2019).
Chivilikhin, D. et al. MoG-VQE: multiobjective genetic variational quantum eigensolver. Preprint at https://arxiv.org/abs/2007.04424 (2020).
Cincio, L., Subaşı, Y., Sornborger, A. T. & Coles, P. J. Learning the quantum algorithm for state overlap. N. J. Phys. 20, 113022 (2018).
Zhang, S.-X., Hsieh, C.-Y., Zhang, S. & Yao, H. Differentiable quantum architecture search. Quantum Sci. Technol. 7, 045023 (2022).
Wada, K., Raymond, R., Sato, Y. & Watanabe, H. C. Sequential optimal selections of single-qubit gates in parameterized quantum circuits. Quantum Sci. Technol. 9, 035030 (2024).
Grimsley, H. R., Mayhall, N. J., Barron, G. S., Barnes, E. & Economou, S. E. Adaptive, problem-tailored variational quantum eigensolver mitigates rough parameter landscapes and barren plateaus. npj Quantum Inf. 9, 19 (2023).
Anastasiou, P. G., Chen, Y., Mayhall, N. J., Barnes, E. & Economou, S. E. TETRIS-ADAPT-VQE: an adaptive algorithm that yields shallower, denser circuit ansätze. Phys. Rev. Res. 6, 013254 (2024).
Van Dyke, J. S. et al. Scaling adaptive quantum simulation algorithms via operator pool tiling. Phys. Rev. Res. 6, L012030 (2024).
Romero, A., Engel, J., Tang, H. L. & Economou, S. E. Solving nuclear structure problems with the adaptive variational quantum algorithm. Phys. Rev. C 105, 064317 (2022).
Zhu, L. et al. Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. Phys. Rev. Res. 4, 033029 (2022).
Grant, E., Wossnig, L., Ostaszewski, M. & Benedetti, M. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019).
Jain, N., Coyle, B., Kashefi, E. & Kumar, N. Graph neural network initialisation of quantum approximate optimisation. Quantum 6, 861 (2022).
Skolik, A., McClean, J. R., Mohseni, M., van der Smagt, P. & Leib, M. Layerwise learning for quantum neural networks. Quant. Mach. Intell. 3, 1–11 (2021).
Kulshrestha, A. & Safro, I. BEINIT: avoiding barren plateaus in variational quantum algorithms. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 197–203 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9951195 (IEEE, 2022).
Rad, A., Seif, A. & Linke, N. M. Surviving the barren plateau in variational quantum circuits with Bayesian learning initialization. Preprint at https://arxiv.org/abs/2203.02464 (2022).
Astrakhantsev, N., Mazzola, G., Tavernelli, I. & Carleo, G. Phenomenological theory of variational quantum ground-state preparation. Phys. Rev. Res. 5, 033225 (2023).
Haug, T. & Kim, M. Optimal training of variational quantum algorithms without barren plateaus. Preprint at https://arxiv.org/abs/2104.14543 (2021).
Kashif, M., Rashid, M., Al-Kuwari, S. & Shafique, M. Alleviating barren plateaus in parameterized quantum machine learning circuits: investigating advanced parameter initialization strategies. In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE) https://ieeexplore.ieee.org/document/10546644 (IEEE 2024).
Shi, X. & Shang, Y. Avoiding barren plateaus via Gaussian mixture model. Preprint at https://arxiv.org/abs/2402.13501 (2024).
Friedrich, L. & Maziero, J. Avoiding barren plateaus with classical deep neural networks. Phys. Rev. A 106, 042433 (2022).
Rudolph, M. S. et al. Synergistic pretraining of parametrized quantum circuits via tensor networks. Nat. Commun. 14, 8367 (2023).
Marin-Sanchez, G., Gonzalez-Conde, J. & Sanz, M. Quantum algorithms for approximate function loading. Phys. Rev. Res. 5, 033114 (2023).
Cervera-Lierta, A., Kottmann, J. S. & Aspuru-Guzik, A. The meta-variational quantum eigensolver (meta-VQE): learning energy profiles of parameterized Hamiltonians for quantum simulation. PRX Quantum 2, 020329 (2021).
Goh, M. L., Larocca, M., Cincio, L., Cerezo, M. & Sauvage, F. Lie-algebraic classical simulations for variational quantum computing. Preprint at https://arxiv.org/abs/2308.01432 (2023).
Brandao, F. G., Broughton, M., Farhi, E., Gutmann, S. & Neven, H. For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances. Preprint at https://arxiv.org/abs/1812.04170 (2018).
Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020).
Wurtz, J. & Lykov, D. Fixed-angle conjectures for the quantum approximate optimization algorithm on regular maxcut graphs. Phys. Rev. A 104, 052419 (2021).
Boulebnane, S. & Montanaro, A. Predicting parameters for the quantum approximate optimization algorithm for max-cut from the infinite-size limit. Preprint at https://arxiv.org/abs/2110.10685 (2021).
Galda, A., Liu, X., Lykov, D., Alexeev, Y. & Safro, I. Transferability of optimal QAOA parameters between random graphs. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 171–180 https://www.computer.org/csdl/proceedings-article/qce/2021/169100a171/1yEZ9MWWjSg (IEEE, 2021).
Mele, A. A., Mbeng, G. B., Santoro, G. E., Collura, M. & Torta, P. Avoiding barren plateaus via transferability of smooth solutions in a Hamiltonian variational ansatz. Phys. Rev. A 106, L060401 (2022).
Liu, H.-Y., Sun, T.-P., Wu, Y.-C., Han, Y.-J. & Guo, G.-P. Mitigating barren plateaus with transfer-learning-inspired parameter initializations. N. J. Phys. 25, 013039 (2023).
Zhang, Z.-J., Sun, J., Yuan, X. & Yung, M.-H. Low-depth Hamiltonian simulation by an adaptive product formula. Phys. Rev. Lett. 130, 040601 (2023).
Gacon, J., Nys, J., Rossi, R., Woerner, S. & Carleo, G. Variational quantum time evolution without the quantum geometric tensor. Phys. Rev. Res. 6, 013143 (2024).
Campos, E., Rabinovich, D., Akshay, V. & Biamonte, J. Training saturation in layerwise quantum approximate optimization. Phys. Rev. A 104, L030401 (2021).
Campos, E., Nasrallah, A. & Biamonte, J. Abrupt transitions in variational quantum circuit training. Phys. Rev. A 103, 032607 (2021).
Fitzek, D., Jonsson, R. S., Dobrautz, W. & Schäfer, C. Optimizing variational quantum algorithms with qBang: efficiently interweaving metric and momentum to navigate flat energy landscapes. Quantum 8, 1313 (2024).
Acampora, G., Chiatto, A. & Vitiello, A. A comparison of evolutionary algorithms for training variational quantum classifiers. In 2023 IEEE Congress on Evolutionary Computation (CEC) 1–8 https://ieeexplore.ieee.org/abstract/document/10254076 (IEEE, 2023).
Stokes, J., Izaac, J., Killoran, N. & Carleo, G. Quantum natural gradient. Quantum 4, 269 (2020).
Koczor, B. & Benjamin, S. C. Quantum natural gradient generalized to noisy and nonunitary circuits. Phys. Rev. A 106, 062416 (2022).
Arrasmith, A., Cerezo, M., Czarnik, P., Cincio, L. & Coles, P. J. Effect of barren plateaus on gradient-free optimization. Quantum 5, 558 (2021).
Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).
Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).
Cai, Z. et al. Quantum error mitigation. Rev. Mod. Phys. 95, 045005 (2023).
Wang, K., Chen, Y.-A. & Wang, X. Mitigating quantum errors via truncated Neumann series. Sci. China Inf. Sci. 66, 180508 (2023).
Takagi, R., Endo, S., Minagawa, S. & Gu, M. Fundamental limits of quantum error mitigation. npj Quantum Inf. 8, 114 (2022).
Takagi, R., Tajima, H. & Gu, M. Universal sampling lower bounds for quantum error mitigation. Phys. Rev. Lett. 131, 210602 (2023).
Quek, Y., França, D. S., Khatri, S., Meyer, J. J. & Eisert, J. Exponentially tighter bounds on limitations of quantum error mitigation. Nat. Phys. 20, 1648–1658 (2024).
Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J. & Biswas, R. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci. Technol. 3, 030502 (2018).
Gao, X., Anschuetz, E. R., Wang, S.-T., Cirac, J. I. & Lukin, M. D. Enhancing generative models via quantum correlations. Phys. Rev. X 12, 021037 (2022).
Benedetti, M. et al. A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf. 5, 45 (2019).
Liu, J.-G. & Wang, L. Differentiable learning of quantum circuit born machines. Phys. Rev. A 98, 062324 (2018).
Coyle, B., Mills, D., Danos, V. & Kashefi, E. The Born supremacy: quantum advantage and training of an Ising Born Machine. npj Quantum Inf. 6, 60 (2020).
Rudolph, M. S. et al. Trainability barriers and opportunities in quantum generative modeling. npj Quantum Inf. 10, 116 (2024).
Zoufal, C. Generative quantum machine learning. Preprint at https://arxiv.org/abs/2111.12738 (2021).
Lloyd, S. & Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett. 121, 040502 (2018).
Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B. & Melko, R. Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018).
Coopmans, L. & Benedetti, M. On the sample complexity of quantum Boltzmann machine learning. Commun. Phys. 7, 274 (2024).
Chang, S. Y., Thanasilp, S., Saux, B. L., Vallecorsa, S. & Grossi, M. Latent style-based quantum GAN for high-quality image generation. Preprint at https://arxiv.org/abs/2406.02668 (2024).
Kieferova, M., Carlos, O. M. & Wiebe, N. Quantum generative training using Rényi divergences. Preprint at https://arxiv.org/abs/2106.09567 (2021).
Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).
Thanasilp, S., Wang, S., Cerezo, M. & Holmes, Z. Exponential concentration in quantum kernel methods. Nat. Commun. 15, 5200 (2024).
Kübler, J., Buchholz, S. & Schölkopf, B. The inductive bias of quantum kernels. Adv. Neural Inf. Process. Syst. 34, 12661–12673 (2021).
Canatar, A., Peters, E., Pehlevan, C., Wild, S. M. & Shaydulin, R. Bandwidth enables generalization in quantum kernel models. Trans. Mach. Learn. Res. https://openreview.net/forum?id=A1N2qp4yAq (2023).
Suzuki, Y. & Li, M. Effect of alternating layered ansatzes on trainability of projected quantum kernel. Phys. Rev. A 110, 012409 (2024).
Suzuki, Y., Kawaguchi, H. & Yamamoto, N. Quantum Fisher kernel for mitigating the vanishing similarity issue. Quantum Sci. Technol. 9, 035050 (2024).
Xiong, W. et al. On fundamental aspects of quantum extreme learning machines. Quant. Mach. Intell. 7, 20 (2025).
Yu, L.-W. et al. Expressibility-induced concentration of quantum neural tangent kernels. Rep. Prog. Phys. 87, 110501 (2024).
Schuld, M. & Petruccione, F. Supervised Learning with Quantum Computers Vol. 17 (Springer, 2018).
Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).
Schuld, M. Supervised quantum machine learning models are kernel methods. Preprint at https://arxiv.org/abs/2101.11020 (2021).
Gan, B. Y., Leykam, D. & Thanasilp, S. A unified framework for trace-induced quantum kernels. Preprint at https://arxiv.org/abs/2311.13552 (2023).
Magann, A. B. et al. From pulses to circuits and back again: a quantum optimal control perspective on variational quantum algorithms. PRX Quantum 2, 010101 (2021).
Ge, X., Wu, R.-B. & Rabitz, H. The optimization landscape of hybrid quantum–classical algorithms: from quantum control to NISQ applications. Annu. Rev. Control https://www.sciencedirect.com/science/article/pii/S1367578822000840 (2022).
Broers, L. & Mathey, L. Mitigated barren plateaus in the time-nonlocal optimization of analog quantum-algorithm protocols. Phys. Rev. Res. 6, 013076 (2024).
Tao, H.-X., Hu, J. & Wu, R.-B. Unleashing the expressive power of pulse-based quantum neural networks. Preprint at https://arxiv.org/abs/2402.02880 (2024).
de Keijzer, R., Tse, O. & Kokkelmans, S. Pulse based variational quantum optimal control for hybrid quantum computing. Quantum 7, 908 (2023).
Pecci, G., Wang, R., Torta, P., Mbeng, G. B. & Santoro, G. Beyond quantum annealing: optimal control solutions to maxcut problems. Quantum Sci. Technol. 9, 045013 (2024).
Martín, E. C., Plekhanov, K. & Lubasch, M. Barren plateaus in quantum tensor network optimization. Quantum 7, 974 (2023).
Feldman, V. Statistical Query Learning, 2090–2095. https://doi.org/10.1007/978-1-4939-2864-4_401 (Springer New York, 2016).
Arunachalam, S., Grilo, A. B. & Yuen, H. Quantum statistical query learning. Preprint at https://arxiv.org/abs/2002.08240 (2020).
Anshu, A. & Arunachalam, S. A survey on the complexity of learning quantum states. Nat. Rev. Phys. 6, 59–69 (2024).
Angrisani, A. Learning unitaries with quantum statistical queries. Preprint at https://arxiv.org/abs/2310.02254 (2023).
Wadhwa, C. & Doosti, M. Learning quantum processes with quantum statistical queries. Preprint at https://arxiv.org/abs/2310.02075 (2023).
Nietner, A. Unifying (quantum) statistical and parametrized (quantum) algorithms. Preprint at https://arxiv.org/abs/2310.17716 (2023).
Nietner, A. et al. On the average-case complexity of learning output distributions of quantum circuits. Preprint at https://arxiv.org/abs/2305.05765 (2023).
Anschuetz, E. R. & Kiani, B. T. Quantum variational algorithms are swamped with traps. Nat. Commun. 13, 7760 (2022).
You, X. & Wu, X. Exponentially many local minima in quantum neural networks. In International Conference on Machine Learning 12144–12155. https://proceedings.mlr.press/v139/you21c.html (PMLR, 2021).
Huang, H.-Y. et al. Learning shallow quantum circuits. In Proc. 56th Annual ACM Symposium on Theory of Computing 1343–1351. https://dl.acm.org/doi/10.1145/3618260.3649722 (2024).
Nemkov, N. A., Kiktenko, E. O. & Fedorov, A. K. Barren plateaus are swamped with traps. Phys. Rev. A 111, 012441 (2025).
Anschuetz, E. R. A unified theory of quantum neural network loss landscapes. Preprint at https://arxiv.org/abs/2408.11901 (2024).
Tikku, A. & Kim, I. H. Circuit depth versus energy in topologically ordered systems. Preprint at https://arxiv.org/abs/2210.06796 (2022).
Basheer, A., Feng, Y., Ferrie, C. & Li, S. Alternating layered variational quantum circuits can be classically optimized efficiently using classical shadows. Proceedings of the AAAI Conference on Artificial Intelligence 37, 6 (AAAI, 2023).
Jerbi, S. et al. The power and limitations of learning quantum dynamics incoherently. Preprint at https://arxiv.org/abs/2303.12834 (2023).
Somma, R., Barnum, H., Ortiz, G. & Knill, E. Efficient solvability of Hamiltonians and limits on the power of some quantum computational models. Phys. Rev. Lett. 97, 190501 (2006).
Galitski, V. Quantum-to-classical correspondence and Hubbard–Stratonovich dynamical systems: a Lie-algebraic approach. Phys. Rev. A 84, 012118 (2011).
Anschuetz, E. R., Bauer, A., Kiani, B. T. & Lloyd, S. Efficient classical algorithms for simulating symmetric quantum systems. Quantum 7, 1189 (2023).
Angrisani, A. et al. Classically estimating observables of noiseless quantum circuits. Preprint at https://arxiv.org/abs/2409.01706 (2024).
Rudolph, M. S., Fontana, E., Holmes, Z. & Cincio, L. Classical surrogate simulation of quantum systems with lowesa. Preprint at https://arxiv.org/abs/2308.09109 (2023).
Fontana, E., Rudolph, M. S., Duncan, R., Rungger, I. & Cîrstoiu, C. Classical simulations of noisy variational quantum circuits. Preprint at https://arxiv.org/abs/2306.05400 (2023).
Lerch, S. et al. Efficient quantum-enhanced classical simulation for patches of quantum landscapes. Preprint at https://arxiv.org/abs/2411.19896 (2024).
Bharti, K. & Haug, T. Iterative quantum-assisted eigensolver. Phys. Rev. A 104, L050401 (2021).
Bharti, K. & Haug, T. Quantum-assisted simulator. Phys. Rev. A 104, 042418 (2021).
Gil-Fuster, E., Gyurik, C., Pérez-Salinas, A. & Dunjko, V. On the relation between trainability and dequantization of variational quantum learning models. Preprint at https://arxiv.org/abs/2406.07072 (2024).
Parrish, R. M., Hohenstein, E. G., McMahon, P. L. & Martínez, T. J. Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev. Lett. 122, 230401 (2019).
Jerbi, S., Gyurik, C., Marshall, S. C., Molteni, R. & Dunjko, V. Shadows of quantum machine learning. Nat. Commun. 15, 5676 (2024).
Gyurik, C., Molteni, R. & Dunjko, V. Limitations of measure-first protocols in quantum machine learning. Preprint at https://arxiv.org/abs/2311.12618 (2023).
Elben, A. et al. The randomized measurement toolbox. Nat. Rev. Phys. 5, 1 (2023).
White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992).
Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).
Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).
Sharir, O., Levine, Y., Wies, N., Carleo, G. & Shashua, A. Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Phys. Rev. Lett. 124, 020503 (2020).
Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431 (2017).
Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018).
Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proc. Thirteenth International Conference on Artificial Intelligence and Statistics 249–256. https://proceedings.mlr.press/v9/glorot10a (JMLR Workshop and Conference Proceedings, 2010).
Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning 448–456. https://proceedings.mlr.press/v37/ioffe15.html (PMLR, 2015).
Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. Preprint at https://arxiv.org/abs/1607.06450 (2016).
Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proc. 27th International Conference on Machine Learning (ICML-10) 807–814. https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf (2010).
Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6, 107–116 (1998).
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
Narkhede, M. V., Bartakke, P. P. & Sutaone, M. S. A review on weight initialization strategies for neural networks. Artif. Intell. Rev. 55, 291–322 (2022).
Chen, M., Pennington, J. & Schoenholz, S. Dynamical isometry and a mean field theory of RNNs: gating enables signal propagation in recurrent neural networks. In Proc. 35th International Conference on Machine Learning (eds Dy, J. & Krause, A.) Vol. 80 of Proceedings of Machine Learning Research 873–882. https://proceedings.mlr.press/v80/chen18i.html (PMLR, 2018).
Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S. & Pennington, J. Dynamical isometry and a mean field theory of CNNs: how to train 10,000-layer vanilla convolutional neural networks. In Proc. 35th International Conference on Machine Learning (eds Dy, J. & Krause, A.) Vol. 80 of Proceedings of Machine Learning Research 5393–5402. https://proceedings.mlr.press/v80/xiao18a.html (PMLR, 2018).
Saxe, A. M., McClelland, J. L. & Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Preprint at https://doi.org/10.48550/arXiv.1312.6120 (2013).
Baird, L. & Moore, A. Gradient descent for general reinforcement learning. Adv. Neural Inform. Process. Syst. 11 https://proceedings.neurips.cc/paper/1998/hash/af5afd7f7c807171981d443ad4f4f648-Abstract.html (1998).
Salimans, T., Ho, J., Chen, X., Sidor, S. & Sutskever, I. Evolution strategies as a scalable alternative to reinforcement learning. Preprint at https://arxiv.org/abs/1703.03864 (2017).
Standard Deviation. https://en.wikipedia.org/wiki/Standard_deviation#Sample_standard_deviation.
Zeier, R. & Schulte-Herbrüggen, T. Symmetry principles in quantum systems theory. J. Math. Phys. 52, 113510 (2011).
Wierichs, D., East, R. D., Larocca, M., Cerezo, M. & Killoran, N. Symmetric derivatives of parametrized quantum circuits. Preprint at https://arxiv.org/abs/2312.06752 (2023).