• de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Borsch, M., Meierhofer, M., Huber, R. & Kira, M. Lightwave electronics in condensed matter. Nat. Rev. Mater. 8, 668–687 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hassan, M. T. Lightwave electronics: attosecond optical switching. ACS Photonics 11, 334–338 (2024).

    Article 

    Google Scholar
     

  • Hui, D. et al. Ultrafast optical switching and data encoding on synthesized light fields. Sci. Adv. 9, eadf1015 (2023).

    Article 

    Google Scholar
     

  • Boolakee, T. et al. Light-field control of real and virtual charge carriers. Nature 605, 251–255 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kruchinin, S. Y., Krausz, F. & Yakovlev, V. S. Colloquium: strong-field phenomena in periodic systems. Rev. Mod. Phys. 90, 021002 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Schlaepfer, F. et al. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nat. Phys. 14, 560–564 (2018).

    Article 

    Google Scholar
     

  • Inzani, G. et al. Field-driven attosecond charge dynamics in germanium. Nat. Photonics 17, 1059–1065 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ossiander, M. et al. The speed limit of optoelectronics. Nat. Commun. 13, 1620 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photonics 8, 205–213 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Heide, C. et al. Attosecond-fast internal photoemission. Nat. Photonics 14, 219–222 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Yablonovitch, E., Heritage, J. P., Aspnes, D. E. & Yafet, Y. Virtual photoconductivity. Phys. Rev. Lett. 63, 976–979 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Yamanishi, M. Field-induced optical nonlinearity due to virtual transitions in semiconductor quantum well structures. Phys. Rev. Lett. 59, 1014–1017 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Khurgin, J. B. Optically induced currents in dielectrics and semiconductors as a nonlinear optical effect. J. Opt. Soc. Am. B 33, C1 (2016).

    Article 

    Google Scholar
     

  • Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Paasch-Colberg, T. et al. Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime. Optica 3, 1358–1361 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sanari, Y. et al. Role of virtual band population for high harmonic generation in solids. Phys. Rev. B 102, 041125 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Jürgens, P. et al. Origin of strong-field-induced low-order harmonic generation in amorphous quartz. Nat. Phys. 16, 1035–1039 (2020).

    Article 

    Google Scholar
     

  • Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lucchini, M. et al. Attosecond dynamical Franz–Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Geneaux, R., Marroux, H. J. B., Guggenmos, A., Neumark, D. M. & Leone, S. R. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Philos. Trans. R. Soc. A 377, 20170463 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Di Palo, N. et al. Attosecond absorption and reflection spectroscopy of solids. APL Photonics 9, 20901 (2024).

    Article 

    Google Scholar
     

  • Lucarelli, G. D. et al. Novel beamline for attosecond transient reflection spectroscopy in a sequential two-foci geometry. Rev. Sci. Instrum. 91, 053002 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Volkov, M. et al. Floquet–Bloch resonances in near-petahertz electroabsorption spectroscopy of SiO2. Phys. Rev. B 107, 184304 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zimin, D. A. et al. Dynamic optical response of solids following 1-fs-scale photoinjection. Nature 618, 276–280 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gruzdev, V. & Sergaeva, O. Ultrafast modification of band structure of wide-band-gap solids by ultrashort pulses of laser-driven electron oscillations. Phys. Rev. B 98, 115202 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Otobe, T., Shinohara, Y., Sato, S. A. & Yabana, K. Femtosecond time-resolved dynamical Franz–Keldysh effect. Phys. Rev. B 93, 045124 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Inzani, G., Di Palo, N., Dolso, G. L., Nisoli, M. & Lucchini, M. Absolute delay calibration by analytical fitting of attosecond streaking measurements. J. Phys. Photonics 6, 025007 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Lucchini, M. et al. Attosecond timing of the dynamical Franz–Keldysh effect. J. Phys. Photonics 2, 025001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lucchini, M. et al. Light–matter interaction at surfaces in the spatiotemporal limit of macroscopic models. Phys. Rev. Lett. 115, 137401 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lucchini, M. et al. Unravelling the intertwined atomic and bulk nature of localised excitons by attosecond spectroscopy. Nat. Commun. 12, 1021 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Houston, W. V. Acceleration of electrons in a crystal lattice. Phys. Rev. 57, 184–186 (1940).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Krieger, J. B. & Iafrate, G. J. Time evolution of Bloch electrons in a homogeneous electric field. Phys. Rev. B 33, 5494–5500 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Hui, D. et al. Attosecond electron motion control in dielectric. Nat. Photonics 16, 33–37 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Floquet, G. Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. Ec. Norm. Super. 12, 47–88 (1883).

    Article 

    Google Scholar
     

  • Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lucchini, M. et al. Controlling Floquet states on ultrashort time scales. Nat. Commun. 13, 7103 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 616, 696–701 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ikeda, T. N., Tanaka, S. & Kayanuma, Y. Floquet–Landau–Zener interferometry: usefulness of the Floquet theory in pulse-laser-driven systems. Phys. Rev. Res. 4, 033075 (2022).

    Article 

    Google Scholar
     

  • Reiss, H. R. Theoretical methods in quantum optics: S-matrix and Keldysh techniques for strong-field processes. Prog. Quantum Electron. 16, 1–71 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Gilbertson, S., Khan, S. D., Wu, Y., Chini, M. & Chang, Z. Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers. Phys. Rev. Lett. 105, 093902 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Faccialà, D., Toulson, B. W. & Gessner, O. Removal of correlated background in a high-order harmonic transient absorption spectra with principal component regression. Opt. Express 29, 35135–35148 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dolso, G. L. et al. Dataset for: Attosecond virtual charge dynamics in dielectrics. Zenodo https://doi.org/10.5281/zenodo.14172967 (2024).

  • Sato, S. A. ARTED_noc. GitHub https://github.com/shunsuke-sato/ARTED_noc (2024).