• Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Howald, C., Eisaki, H., Kaneko, N. & Kapitulnik, A. Coexistence of periodic modulation of quasiparticle states and superconductivity in Bi2Sr2CaCu2O8+δ. Proc. Natl Acad. Sci. USA 100, 9705–9709 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2. Nature 430, 1001–1005 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+δ. Nature 454, 1072–1078 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu2O6+x. Science 337, 821–825 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Du, Z. et al. Periodic atomic displacements and visualization of the electron-lattice interaction in the cuprate. Phys. Rev. X 13, 021025 (2023).


    Google Scholar
     

  • Ramirez, A. P. Colossal magnetoresistance. J. Phys.: Condens. Matter 9, 8171–8199 (1997).

    ADS 

    Google Scholar
     

  • Ohmichi, E., Yoshida, Y., Ikeda, S. I., Shirakawa, N. & Osada, T. Colossal magnetoresistance accompanying a structural transition in a highly two-dimensional metallic state of Ca3Ru2O7. Phys. Rev. B 70, 104414 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Lin, X. N., Zhou, Z. X., Durairaj, V., Schlottmann, P. & Cao, G. Colossal magnetoresistance by avoiding a ferromagnetic state in the Mott system Ca3Ru2O7. Phys. Rev. Lett. 95, 017203 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Satoh, H. & Ohkawa, F. J. Theory of the metamagnetic crossover in CeRu2Si2. Phys. Rev. B 63, 184401 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Gegenwart, P., Weickert, F., Perry, R. S. & Maeno, Y. Low-temperature magnetostriction of Sr3Ru2O7. Phys. B: Condens. Matter 378, 117–118 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Yin, J.-X. et al. Giant and anisotropic many-body spin-orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Naritsuka, M. et al. Compass-like manipulation of electronic nematicity in Sr3Ru2O7. Proc. Natl Acad. Sci. USA 120, e2308972120 (2023).

    Article 

    Google Scholar
     

  • Cheng, E. et al. Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi. Nat. Commun. 15, 1467 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Slater, J. C. Atomic shielding constants. Phys. Rev. 36, 57–64 (1930).

    Article 
    ADS 

    Google Scholar
     

  • Sommerfeld, A. & Bethe, H. in Elektronentheorie der Metalle 333–622 (Springer, 1933).

  • Azumi, K. & Goldman, J. E. Volume magnetostriction in nickel and the Bethe-Slater interaction curve. Phys. Rev. 93, 630 (1954).

    Article 
    ADS 

    Google Scholar
     

  • Mokrousov, Y., Bihlmayer, G., Blügel, S. & Heinze, S. Magnetic order and exchange interactions in monoatomic 3d transition-metal chains. Phys. Rev. B 75, 104413 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Gallagher, K. A., Willard, M. A., Zabenkin, V. N., Laughlin, D. E. & McHenry, M. E. Distributed exchange interactions and temperature dependent magnetization in amorphous Fe88−xCoxZr7B4Cu1 alloys. J. Appl. Phys. 85, 5130–5132 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C. et al. Bethe-Slater-curve-like behavior and interlayer spin-exchange coupling mechanisms in two-dimensional magnetic bilayers. Phys. Rev. B 102, 020402 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, S., Xie, H., Shan, J. & Mak, K. F. Exchange magnetostriction in two-dimensional antiferromagnets. Nat. Mater. 19, 1295–1299 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chen, W. et al. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 366, 983–987 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sander, D. Handbook of Magnetism and Magnetic Materials (eds Coey, J. M. D. & Parkin, S. S. P.) 549–593 (Springer, 2021).

  • Cao, G. et al. Competing ground states in triple-layered Sr4Ru3O10: verging on itinerant ferromagnetism with critical fluctuations. Phys. Rev. B 68, 174409 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Lin, X. N., Bondarenko, V. A., Cao, G. & Brill, J. W. Specific heat of Sr4Ru3O10. Solid State Commun. 130, 151–154 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Crawford, M. K. et al. Structure and magnetism of single crystal Sr4Ru3O10: a ferromagnetic triple-layer ruthenate. Phys. Rev. B 65, 214412 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, H. et al. Observation of a pressure-induced transition from interlayer ferromagnetism to intralayer antiferromagnetism in Sr4Ru3O10. Phys. Rev. B 98, 064418 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Schottenhamel, W. et al. Dilatometric study of the metamagnetic and ferromagnetic phases in the triple-layered Sr4Ru3O10 system. Phys. Rev. B 94, 155154 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Benedičič, I. et al. Interplay of ferromagnetism and spin-orbit coupling in Sr4Ru3O10. Phys. Rev. B 106, L241107 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Marques, C. A. et al. Spin-orbit coupling induced Van Hove singularity in proximity to a Lifshitz transition in Sr4Ru3O10. npj Quantum Mater. 9, 35 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Trainer, C., Abel, C., Bud’ko, S. L., Canfield, P. C. & Wahl, P. Phase diagram of CeSb2 from magnetostriction and magnetization measurements: evidence for ferrimagnetic and antiferromagnetic states. Phys. Rev. B 104, 205134 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tamai, A. et al. High-resolution photoemission on Sr2RuO4 reveals correlation-enhanced effective spin-orbit coupling and dominantly local self-energies. Phys. Rev. X 9, 021048 (2019).


    Google Scholar
     

  • Gratz, E., Lindbaum, A., Markosyan, A. S., Mueller, H. & Yu Sokolov, A. Isotropic and anisotropic magnetoelastic interactions in heavy and light RCo2 laves phase compounds. J. Phys.: Condens. Matter 6, 6699 (1994).

    ADS 

    Google Scholar
     

  • Szymczak, H. Giant magnetostrictive effects in magnetic oxides. J. Magn. Magn. Mater. 40, 066501 (2000).


    Google Scholar
     

  • He, J.-C. et al. Magnetic-field-induced sign changes of thermal expansion in DyCrO4. Chin. Phys. Lett. 40, 066501 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gupta, R., Kim, M., Barath, H., Cooper, S. L. & Cao, G. Field- and pressure-induced phases in Sr4Ru3O10: a spectroscopic investigation. Phys. Rev. Lett. 96, 067004 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Veenstra, C. N. et al. Determining the surface-to-bulk progression in the normal-state electronic structure of Sr2RuO4 by angle-resolved photoemission and density functional theory. Phys. Rev. Lett. 110, 097004 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kreisel, A. et al. Quasi-particle interference of the Van Hove singularity in Sr2RuO4. npj Quantum Mater. 6, 100 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gebreyesus, G. et al. Electronic structure and magnetism of the triple-layered ruthenate Sr4Ru3O10. Phys. Rev. B 105, 165119 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ngabonziza, P. et al. Layer-dependent spin-resolved electronic structure of ferromagnetic triple-layered ruthenate Sr4Ru3O10. Phys. Rev. B. 111, 115146 (2025).

    Article 

    Google Scholar
     

  • Chandrasekaran, A. et al. On the engineering of higher-order Van Hove singularities in two dimensions. Nat. Commun. 15, 9521 (2024).

    Article 

    Google Scholar
     

  • Fittipaldi, R., Sisti, D., Vecchione, A. & Pace, S. Crystal growth of a lamellar Sr3Ru2O7–Sr4Ru3O10 eutectic system. Cryst. Growth Des. 7, 2495–2499 (2007).

    Article 

    Google Scholar
     

  • Singh, U. R., Enayat, M., White, S. C. & Wahl, P. Construction and performance of a dilution-refrigerator based spectroscopic-imaging scanning tunneling microscope. Rev. Sci. Instrum. 84, 013708 (2013).

    Article 
    ADS 

    Google Scholar
     

  • White, S. C., Singh, U. R. & Wahl, P. A stiff scanning tunneling microscopy head for measurement at low temperatures and in high magnetic fields. Rev. Sci. Instrum. 82, 113708 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 29, 465901 (2017).


    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys.: Condens. Matter 6, 8245–8257 (1994).

    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Marques, C. A. et al. Exchange-driven giant magnetoelastic coupling in a correlated itinerant ferromagnet (dataset). University of St Andrews Research Portal https://doi.org/10.17630/be94879c-bfcc-460f-9061-764b1212d943 (2025).