• Park, S., Garcia-Palacios, J., Cohen, A. & Varga, Z. From treatment to prevention: the evolution of digital healthcare. Nature 573, 7775 (2019).


    Google Scholar
     

  • Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat. Med. 29, 1623–1630 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chapman, R. & Middleton, J. The NHS long term plan and public health. BMJ 364, l218 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Sunwoo, S.-H., Ha, K.-H., Lee, S., Lu, N. & Kim, D.-H. Wearable and implantable soft bioelectronics: device designs and material strategies. Annu. Rev. Chem. Biomol. 12, 359–391 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cho, K. W. et al. Soft bioelectronics based on nanomaterials. Chem. Rev. 122, 5068–5143 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feiner, R. & Dvir, T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, C., Park, J., Root, S. E. & Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2, 671–690 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yuk, H., Wu, J. & Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Skin-interfaced wireless biosensors for perinatal and paediatric health. Nat. Rev. Bioeng. 1, 631–647 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Article 

    Google Scholar
     

  • Koo, J. H. et al. Electronic skin: opportunities and challenges in convergence with machine learning. Annu. Rev. Biomed. Eng. 26, 331–355 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, C., Solomon, S. A. & Gao, W. Artificial intelligence-powered electronic skin. Nat. Mach. Intell. 5, 1344–1355 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, J. R., Xu, S. & Rogers, J. A. From lab to life: how wearable devices can improve health equity. Nat. Commun. 15, 123 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, N., Heikenfeld, J., Milla, C. & Javey, A. The challenges and promise of sweat sensing. Nat. Biotechnol. 42, 860–871 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023).

    Article 

    Google Scholar
     

  • Sunwoo, S.-H. et al. Soft bioelectronics for the management of cardiovascular diseases. Nat. Rev. Bioeng. 2, 8–24 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dong, C. et al. Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces. Nat. Mater. 23, 969–976 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, H. et al. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl Acad. Sci. USA 104, 15607–15612 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Syringe injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. J. Mater. Chem. C 5, 8714–8722 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, M. et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019).

    Article 

    Google Scholar
     

  • Zhang, L. et al. 3D morphable systems via deterministic microfolding for vibrational sensing, robotic implants, and reconfigurable telecommunication. Sci. Adv. 8, eade0838 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Skin-inspired, sensory robots for electronic implants. Nat. Commun. 15, 4777 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 384, 987–994 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lacour, S. P., Wagner, S., Huang, Z. & Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 8, 344ra86 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siddiqui, S. et al. A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy 30, 434–442 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z., Li, T., Yang, S., Ji, B. & Wang, Z. Revolutionizing flexible electronics with liquid metal innovations. Device 2, 100331 (2024).

    Article 

    Google Scholar
     

  • Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 378, 637–641 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 20, 1670–1676 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. H. et al. Strain-invariant stretchable radio-frequency electronics. Nature 629, 1047–1054 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D. C. et al. Intrinsically stretchable quantum dot light-emitting diodes. Nat. Electron. 7, 365–374 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shim, H. et al. Elastic integrated electronics based on a stretchable n-type elastomer–semiconductor–elastomer stack. Nat. Electron. 6, 349–359 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tan, P. et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13, 358 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, W. B. et al. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohm, Y. et al. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4, 185–192 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y. et al. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7, 51–65 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jin, S. et al. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation. Nature 623, 58–65 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, T. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. N-type semiconducting hydrogel. Science 384, 557–563 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, H., Xin, Y., Xu, J., Liu, H. & Zhang, J. Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors. Mater. Horiz. 6, 618–625 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jing, X., Mi, H.-Y., Peng, X.-F. & Turng, L.-S. Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon 136, 63–72 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Qin, Z. et al. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 12, 4944–4953 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J., Zhao, Z., Wang, S., Guo, Y. & Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 4, 2748–2785 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Van der Zee, B., Li, Y., Wetzelaer, G.-J. A. H. & Blom, P. W. M. Efficiency of polymer light-emitting diodes: a perspective. Adv. Mater. 34, 2108887 (2022).

    Article 

    Google Scholar
     

  • Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photon. 6, 153–161 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Fan, X. et al. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6, 1900813 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Baker, C. O., Huang, X., Nelson, W. & Kaner, R. B. Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 5, 1510–1525 (2017).

    Article 

    Google Scholar
     

  • Liu, Y. & Wu, F. Synthesis and application of polypyrrole nanofibers: a review. Nanoscale Adv. 5, 3606–3618 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyle, C. J. et al. Tuning charge transport dynamics via clustering of doping in organic semiconductor thin films. Nat. Commun. 10, 2827 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Sonar, P., Murphy, L. & Hong, W. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 6, 1684–1710 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Costa, C. M. et al. Smart and multifunctional materials based on electroactive poly(vinylidene fluoride): recent advances and opportunities in sensors, actuators, energy, environmental, and biomedical applications. Chem. Rev. 123, 11392–11487 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X.-J., Zheng, M.-S., Chen, G., Dang, Z.-M. & Zha, J.-W. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy Environ. Sci. 15, 56–81 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y., Zhang, S., Tok, J. B.-H. & Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lipomi, D. J. Stretchable figures of merit in deformable electronics. Adv. Mater. 28, 4180–4183 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuo, Z. et al. Intrinsically stretchable fully π-conjugated polymer film via fluid conjugated molecular external-plasticizing for flexible light-emitting diodes. Nat. Commun. 15, 7990 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J.-H. & Park, J.-W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv. 7, eabd9715 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosseini, E., Kollath, V. O. & Karan, K. The key mechanism of conductivity in PEDOT:PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment. J. Mater. Chem. C 8, 3982–3990 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lingstedt, L. V. et al. Effect of DMSO solvent treatments on the performance of PEDOT:PSS based organic electrochemical transistors. Adv. Electron. Mater. 5, 1800804 (2019).

    Article 

    Google Scholar
     

  • Chen, R. et al. PEDOT:PSS as stretchable conductors with good wettability on the substrate through the simultaneous plasticization and secondary doping with a cationic or anionic surfactant. Macromolecules 12, 4967–4978 (2022).

    Article 

    Google Scholar
     

  • Mun, J. et al. Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers. Adv. Mater. 31, 1903912 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Z., Xia, Y., Du, D. & Ouyang, J. PEDOT:PSS films with metallic conductivity through a treatment with common organic solutions of organic salts and their application as a transparent electrode of polymer solar cells. ACS Appl. Mater. Interfaces 8, 11629–11638 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W., Li, Y., Song, Z., Wang, Y.-X. & Hu, W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem. Soc. Rev. 53, 10575–10603 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, B. et al. Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feing, V. R., Tran, H., Lee, M. & Bao, Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9, 2740 (2018).

    Article 

    Google Scholar
     

  • Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv. Funct. Mater. 29, 1905340 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D. et al. Incorporating conjugated rigid fused-rings with bulky side groups. J. Am. Chem. Soc. 143, 11679–11689 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat. Mater. 22, 737–745 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mun, J. et al. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater. 28, 1804222 (2018).

    Article 

    Google Scholar
     

  • Zhang, S. et al. Molecular origin of strain-induced chain alignment in PDPP-based semiconducting polymeric thin films. Adv. Funct. Mater. 31, 2100161 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Elastic–plastic fully π-conjugated polymer with excellent energy dissipation capacity for ultra-deep-blue flexible polymer light-emitting diodes with CIEy = 0.04. Adv. Mater. 36, 2402708 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yue, H. et al. In situ continuous hydrogen-bonded engineering for intrinsically stretchable and healable high-mobility polymer semiconductors. Sci. Adv. 10, eadq0171 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mun, J. et al. A design strategy for high mobility stretchable polymer semiconductors. Nat. Commun. 12, 3572 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, X. et al. Intrinsically stretchable polymer semiconductors with good ductility and high charge mobility through reducing the central symmetry of the conjugated backbone units. Adv. Mater. 35, 2209896 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Molecular design of multifunctional integrated polymer semiconductors with intrinsic stretchability, high mobility, and intense luminescence. Adv. Mater. 36, 2305987 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xue, X. et al. Conjugated polymer-based photo-crosslinker for efficient photo-patterning of polymer semiconductors. Adv. Mater. 36, 2407305 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 12, 5701 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, S., Han, S. I., Kim, D., Hyeon, T. & Kim, D.-H. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48, 1566–1595 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, M., Park, J. & Jeong, U. Design of conductive composite elastomers for stretchable electronics. Nano Today 9, 244–260 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kim, N. et al. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 11, 1424 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • José Andrés, L. et al. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells. Nanotechnology 26, 265201 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Moon, G. D. et al. Highly stretchable patterned gold electrodes made of Au nanosheets. Adv. Mater. 25, 1707–2712 (2013).

    Article 

    Google Scholar
     

  • Lim, C. et al. Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and biocompatible nanocomposites. ACS Nano 16, 10431–10442 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, K. et al. Low-voltage intrinsically stretchable organic transistor amplifiers for ultrasensitive electrophysiological signal detection. Adv. Mater. 35, 2207006 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tropp, J. et al. Conducting polymer nanoparticles with intrinsic aqueous dispersibility for conductive hydrogels. Adv. Mater. 36, 2306691 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Sunwoo, S.-H. et al. Stretchable low-impedance conductor with Ag–Au–Pt core–shell–shell nanowires and in situ formed Pt nanoparticles for wearable and implantable device. ACS Nano 17, 7550–7561 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C.-H. & Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 6, 75 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Z. et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv. Mater. 31, 1903446 (2019).

    Article 

    Google Scholar
     

  • Jung, D. et al. Metal-like stretchable nanocomposite using locally-bundled nanowires for skin-mountable devices. Adv. Mater. 35, 2303458 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Song, S. et al. Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser. ACS Nano 17, 21443–21454 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Soft strain-insensitive bioelectronics featuring brittle materials. Science 378, 1222–1227 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, C. et al. Highly conductive and stretchable hydrogel nanocomposite using whiskered gold nanosheets for soft bioelectronics. Adv. Mater. 36, 2407931 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. A self-healing electrically conductive organogel composite. Nat. Electron. 6, 206–215 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Volinsky, A. A. & Gallant, N. D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 131, 41050 (2014).

    Article 

    Google Scholar
     

  • Harito, C., Bavykin, D. V., Yuliarto, B., Dipojono, H. K. & Walsh, F. C. Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11, 4653–4682 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 34, 2200261 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yuk, H. et al. Dry double-sided tape for adhesion of wet tissues and devices. Nature 575, 169–174 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 49, 433–464 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vo, N. T. P. et al. Autonomous self-healing supramolecular polymer transistors for skin electronics. Nat. Commun. 15, 3433 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bae, J.-Y. et al. A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing. Nat. Electron. 7, 815–828 (2024).

    Article 

    Google Scholar
     

  • Xu, Y. et al. Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics. Nat. Nanotechnol. 19, 1158–1167 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Z. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5, 784–793 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rosset, S., Niklaus, M., Dubois, P. & Shea, H. R. Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19, 470–478 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Akter, T. & Kim, W. S. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl. Mater. Interfaces 4, 1855–1859 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, F. & Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H.-S., Pan, B.-C. & Liou, G.-S. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 9, 2633–2639 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, Z. et al. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 23, 664–668 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koo, J. H. et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 6, 137–145 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated low voltage, soft e-skin. Science 380, 735–742 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 4, 143–150 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guan, Y.-S. et al. Elastic electronics based on micromesh-structured rubbery semiconductor films. Nat. Electron. 5, 881–892 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, Y., Wang, S., Wang, R., Sun, J. & Gao, L. Copper nanowire based transparent conductive films with high stability and superior stretchability. J. Mater. Chem. C 2, 5309–5316 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Shin, Y. et al. Low-impedance tissue–device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. Sci. Adv. 10, eadi7724 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M., Li, H., Zhong, W., Zhao, Q. & Wang, D. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl. Mater. Interfaces 6, 1313–1319 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z., Qian, Z., Song, J. & Zhang, Y. Conducting and stretchable composites using sandwiched graphene–carbon nanotube hybrids and styrene–butadiene rubber. Carbon 149, 181–189 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jung, D. et al. Adaptive self-organization of nanomaterials enables strain-insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 34, 2200980 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Seo, H. et al. Durable and fatigue-resistant soft peripheral neuroprosthetics for in vivo bi-directional signaling. Adv. Mater. 33, 2007346 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Z. et al. Permeable superelastic liquid–metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. Stretchable liquid metal based biomedical devices. npj Flex. Electron. 8, 12 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Porous liquid metal elastomer composites with high leakage resistance and antimicrobial property for skin-interfaced bioelectronics. Sci. Adv. 9, eadf0575 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, D. H., Hu, C., Li, L. & Bartlett, M. D. Soft electronic vias and interconnects through rapid three-dimensional assembly of liquid metal microdroplets. Nat. Electron. 7, 1015–1024 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chong, J. et al. Highly conductive tissue-like hydrogel interface through template-directed assembly. Nat. Commun. 14, 2206 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sim, K. et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 5, eaav5749 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, D. et al. High-performance carbon nanotube field-effect transistors with electron mobility of 39.4 cm2 V−1 s−1 using anion–π interaction doping. Carbon 203, 761–769 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, N. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, H. et al. Janus CoMOF-SEBS membrane for bifunctional dielectric layer in triboelectric nanogenerators. Adv. Sci. 11, 2307656 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G. et al. Enhanced dielectric performance of PDMS-based three-phase percolative nanocomposite films incorporating a high dielectric constant ceramic and conductive multi-walled carbon nanotubes. J. Mater. Chem. C 6, 10829–10837 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Research progress on dielectric properties of PU and its application on capacitive sensors and OTFTs. React. Funct. Polym. 181, 105420 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Matsuno, R. et al. Relationship between the relative dielectric constant and the monomer sequence of acrylonitrile in rubber. ACS Omega 5, 16255–16262 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. Y. Phase behavior of binary and ternary fluoropolymer (PVDF-HFP) solutions for single-ion conductors. RSC Adv. 12, 21160–21171 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ankit et al. High-k, ultrastretchable self-enclosed ionic liquid–elastomer composites for soft robotics and flexible electronics. ACS Appl. Mater. Interfaces 12, 37561–37570 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, D. et al. Improved electromechanical properties of NBR dielectric composites by poly(dopamine) and silane surface functionalized TiO2 nanoparticles. J. Mater. Chem. C 4, 7724–7734 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J. et al. Ultrathin, solvent-resistant dielectric for monolithic fabrication of low-power, intrinsically stretchable active-matrix electronic skin. Device 2, 100426 (2024).

    Article 

    Google Scholar
     

  • Chang, S. et al. Flexible and stretchable light-emitting diodes and photodetectors for human-centric optoelectronics. Chem. Rev. 124, 768–859 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. J., Choi, H., Kim, D.-H. & Son, D. Stretchable functional nanocomposites for soft implantable bioelectronics. Nano Lett. 24, 8453–8464 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian, Y. et al. Patterning techniques based on metallized electrospun nanofibers for advanced stretchable electronics. Adv. Sci. 11, 2309735 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ma, J. et al. Shaping a soft future: patterning liquid metals. Adv. Mater. 35, 2205196 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wu, H. et al. Fabrication techniques for curved electronics on arbitrary surfaces. Adv. Mater. Technol. 5, 2000093 (2020).

    Article 

    Google Scholar
     

  • Won, D. et al. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8, eabo3209 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X.-R. Recent progress of patterned electrodes in wearable electronics: fabrication and application. J. Phys. D Appl. Phys. 57, 013001 (2023).

    Article 

    Google Scholar
     

  • Zhou, W. et al. Soft and stretchable organic bioelectronics for continuous intraoperative neurophysiological monitoring during microsurgery. Nat. Biomed. Eng. 7, 1270–1281 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhuang, Q. et al. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Sci. Adv. 9, eadg8602 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, G.-H. et al. Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics. Nat. Commun. 14, 4173 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sim, K. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 3, 775–784 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Choudhary, K. et al. Comparison of the mechanical properties of a conjugated polymer deposited using spin coating, interfacial spreading, solution shearing, and spray coating. ACS Appl. Mater. Interfaces 13, 51436–51446 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soe, H. M., Manaf, A. A., Matsuda, A. & Jaafar, M. Performance of a silver nanoparticles-based polydimethylsiloxane composite strain sensor produced using different fabrication methods. Sens. Actuat. A Phys. 329, 112793 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dey, R. et al. Graphene-based electrodes for ECG signal monitoring: fabrication methodologies, challenges and future directions. Cogent Eng. 10, 2246750 (2023).

    Article 

    Google Scholar
     

  • Xu, Z. et al. A highly-adhesive and self-healing elastomer for bio-interfacial electrode. Adv. Funct. Mater. 31, 2006432 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Self-healing, robust, and stretchable electrode by direct printing on dynamic polyurea surface at slightly elevated temperature. Adv. Funct. Mater. 31, 2102225 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, G.-H. et al. Large-area photo-patterning of initially conductive EGaIn particle-assembled film for soft electronics. Mater. Today 67, 84–94 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, T. et al. Large-area synthesis of ultrathin, flexible, and transparent conductive metal-organic framework thin films via a microfluidic-based solution shearing process. Adv. Mater. 34, 2107696 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Du, X. et al. A review of inkjet printing technology for personalized-healthcare wearable devices. J. Mater. Chem. C 10, 14091–14115 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Recent advances in inkjet-printing technologies for flexible/wearable electronics. Nanoscale 15, 6025–6051 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, Z. et al. 3D printing of liquid metals: recent advancements and challenges. Adv. Funct. Mater. 33, 2213312 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ge, G., Wang, Q., Zhang, Y.-Z., Alshareef, H. N. & Dong, X. 3D printing of hydrogels for stretchable ionotronic devices. Adv. Funct. Mater. 31, 2107437 (2021).

    Article 

    Google Scholar
     

  • Gao, Z. et al. Advances in wearable strain sensors based on electrospun fibers. Adv. Funct. Mater. 33, 2214265 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Yokota, T. & Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 13, 22 (2021).

    Article 

    Google Scholar
     

  • Oh, B. et al. 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics. Nat. Commun. 15, 5839 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neumann, T. V. & Dickey, M. D. Liquid metal direct write and 3D printing: a review. Adv. Mater. Technol. 5, 2000070 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Saadi, M. A. S. R. et al. Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, 2108855 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Park, J., Lee, Y., Lee, H. & Ko, H. Transfer printing of electronic functions on arbitrary complex surfaces. ACS Nano 14, 12–20 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Z. & Lin, Y. Transfer printing technologies for soft electronics. Nanoscale 14, 16749–16760 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakorikar, T. et al. A guide to printed stretchable conductors. Chem. Rev. 124, 860–888 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Havenko, S., Czubak, J., Piskozub, Y., Uhryn, Y. & Labetska, M. Modeling the process of ink transfer from the gravure printing plate to the printing substrate. J. Print Media Technol. Res. 13, 97–105 (2024).


    Google Scholar
     

  • Liedert, C. et al. Roll-to-roll manufacturing of integrated immunodetection sensors. ACS Sens. 5, 2010–2017 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veerapandian, S. et al. Printable inks and deformable electronic array devices. Nanoscale Horiz. 7, 663–681 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D. W., Kong, M. & Jeong, U. Interface design for stretchable electronic devices. Adv. Sci. 8, 2004170 (2021).

    Article 

    Google Scholar
     

  • Ahn, J. et al. Illuminating recent progress in nanotransfer printing: core principles, emerging applications, and future perspectives. Adv. Sci. 11, 2303704 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bellani, S. et al. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 50, 11870–11965 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L. et al. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices. Sci. Adv. 10, eadk9460 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J. et al. Intrinsically stretchable, semi-transparent organic photovoltaics with high efficiency and mechanical robustness via a full-solution process. Energy Environ. Sci. 16, 1251–1263 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Oh, J. Y. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 5, eaav3097 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, D. et al. Double-microcrack coupling stretchable neural electrode for electrophysiological communication. Adv. Funct. Mater. 33, 2300412 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y. et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7, eabg9180 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, J. et al. Tuning strain sensor performance via programmed thin-film crack evolution. ACS Appl. Mater. Interfaces 13, 38105–38113 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y.-C., Boero, G. & Brugger, J. Stretchable conductors fabricated by stencil lithography and centrifugal force-assisted patterning of liquid metal. ACS Appl. Electron. Mater. 3, 5423–5432 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic gallium–indium. Nat. Mater. 20, 851–858 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, M. et al. Nanowire-assisted freestanding liquid metal thin-film patterns for highly stretchable electrodes on 3D surfaces. npj Flex. Electron. 6, 99 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C., Ma, B., Yuan, S., Zhao, C. & Liu, H. High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing electronics. Adv. Electron. Mater. 6, 1900721 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. W. et al. Fabrication of practical deformable displays: advances and challenges. Light Sci. Appl. 12, 61 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Vertically stacked skin-like active-matrix display with ultrahigh aperture ratio. Light Sci. Appl. 13, 177 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, S. et al. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 629, 810–830 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, K. et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron. 4, 302–312 (2021).

    Article 

    Google Scholar
     

  • Tu, J. et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 7, 1293–1306 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M., Park, J. J., Cho, C. & Ko, S. H. Liquid metal based stretchable room temperature soldering sticker patch for stretchable electronics integration. Adv. Funct. Mater. 33, 2303286 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tang, L., Yang, S., Zhang, K. & Jiang, X. Skin electronics from biocompatible in situ welding enabled by intrinsically sticky conductors. Adv. Sci. 9, 2202043 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Oh, J.-Y. et al. Skin electronics from biocompatible in situ welding enabled by intrinsically sticky conductors. ACS Appl. Mater. Interfaces 14, 49303–49312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, S. et al. Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal particles. Nat. Electron. 7, 576–585 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lopes, P. A., Santos, B. C., de Almeida, A. T. & Tavakoli, M. Reversible polymer–gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing. Nat. Commun. 12, 4666 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, S. et al. Softening implantable bioelectronics: material designs, applications, and future directions. Biosens. Bioelectron. 258, 116328 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, H. et al. High density integration of stretchable inorganic thin film transistors with excellent performance and reliability. Nat. Commun. 13, 4963 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang, Q. et al. Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders. Nat. Electron. 7, 598–609 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Min, H. et al. Highly air/water-permeable hierarchical mesh architectures for stretchable underwater electronic skin patches. ACS Appl. Mater. Interfaces 12, 14425–14432 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeon, H. et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 7, eabg8459 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dominguez-Alfaro, A. et al. Light-based 3D multi-material printing of micro-structured bio-shaped, conducting and dry adhesive electrodes for bioelectronics. Adv. Sci. 11, 2306424 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. et al. A shape-morphing cortex-adhesive sensor for closed-loop transcranial ultrasound neurostimulation. Nat. Electron. 7, 800–814 (2024).

    Article 

    Google Scholar
     

  • Baik, S. et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546, 396–404 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. Adhesive anti-fibrotic interfaces on diverse organs. Nature 630, 360–367 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, J. et al. Materials and optimized designs for human–machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat. Commun. 14, 4488 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, S. et al. Deployment of an electrocorticography system with a soft robotic actuator. Sci. Robot. 8, eadd1002 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Nam, S. et al. Needle-like multifunctional biphasic microfiber for minimally invasive implantable bioelectronics. Adv. Mater. 36, 2404101 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hu, S., Wang, L., Liu, S. & Yin, L. Recent development of implantable chemical sensors utilizing flexible and biodegradable materials for biomedical applications. ACS Nano 18, 3969–3995 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P., Zhu, B., Du, P. & Travas-Sejdic, J. Electrochemical and electrical biosensors for wearable and implantable electronics based on conducting polymers and carbon-based materials. Chem. Rev. 124, 722–767 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Marzo, G. et al. Sustainable electronic biomaterials for body-compliant devices: challenges and perspectives for wearable bio-mechanical sensors and body energy harvesters. Nano Energy 123, 109336 (2024).

    Article 

    Google Scholar
     

  • Cha, G. D., Kim, D.-H. & Kim, D. C. Wearable and implantable light-emitting diodes and their biomedical applications. Korean J. Chem. Eng. 41, 1–24 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Z., Song, H. & Ding, H. Advancements in implantable temperature sensors: materials, mechanisms, and biological applications. J. Semicond. 46, 011609 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Kar, A. et al. Wearable and implantable devices for drug delivery: applications and challenges. Biomaterials 283, 121435 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Advances in wearable and implantable devices for wireless electrical stimulation therapy. Discov. Electron. 2, 6 (2025).

    Article 

    Google Scholar
     

  • Lee, J. H., Lee, S., Kim, D. & Lee, K. J. Implantable micro-light-emitting diode (µLED)-based optogenetic interfaces toward human applications. Adv. Drug Deliv. Rev. 187, 114399 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mazzotta, A., Carlotti, M. & Mattoli, V. Conformable on-skin devices for thermo-electro-tactile stimulation: materials, design, and fabrication. Mater. Adv. 2, 1787–1820 (2021).

    Article 
    CAS 

    Google Scholar
     

  • La, T.-G. & Le, L. H. Flexible and wearable ultrasound device for medical applications: a review on materials, structural designs, and current challenges. Adv. Mater. Technol. 7, 2100798 (2022).

    Article 

    Google Scholar
     

  • Jang, H. et al. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat. Commun. 13, 6004 (2022).

    Article 

    Google Scholar
     

  • Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sani, E. S. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Heng, W. et al. A smart mask for exhaled breath condensate harvesting and analysis. Science 385, 954–961 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, T. Y. et al. Smart contact lenses with a transparent silver nanowire strain sensor for continuous intraocular pressure monitoring. ACS Appl. Bio Mater. 4, 4532–4541 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat. Biomed. Eng. 7, 1307–1320 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, T. et al. Penetrative and sustained drug delivery using injectable hydrogel nanocomposites for postsurgical brain tumor treatment. ACS Nano 17, 5435–5447 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, X. et al. Permanent fluidic magnets for liquid bioelectronics. Nat. Mater. 23, 703–710 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs. Nat. Biomed. Eng. 5, 1157–1173 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, H. et al. Injectable ultrasonic sensor for wireless monitoring of intracranial signals. Nature 630, 84–90 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, J. et al. A bioadhesive pacing lead for atraumatic cardiac monitoring and stimulation in rodent and porcine models. Sci. Transl. Med. 16, eado9003 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramezani, M. et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat. Nanotechnol. 19, 504–513 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodington, B. J. et al. Electronics with shape actuation for minimally invasive spinal cord stimulation. Sci. Adv. 7, eabg7833 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis. Science 383, 1096–1103 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, P. et al. A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves. Nat. Commun. 15, 4721 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H. et al. Accelerated intestinal wound healing via dual electrostimulation from a soft and biodegradable electronic bandage. Nat. Electron. 7, 299–312 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Stuart, T., Hanna, J. & Gutruf, P. Wearable devices for continuous monitoring of biosignals: challenges and opportunities. APL Bioeng. 6, 021502 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halprin, K. M. Epidermal ‘turnover time’ — a re‐examination. Br. J. Dermatol. 86, 14–19 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, H. et al. Multifunctional conductive hydrogel interface for bioelectronic recording and stimulation. Adv. Healthc. Mater. 13, 2400562 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wu, F. et al. Generating dual structurally and functionally skin-mimicking hydrogels by crosslinking cell-membrane compartments. Nat. Commun. 15, 802 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Z. et al. Advanced energy harvesters and energy storage for powering wearable and implantable medical devices. Adv. Mater. 36, 2404492 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Roy, S. et al. Powering solutions for biomedical sensors and implants inside the human body: a comprehensive review on energy harvesting units, energy storage, and wireless power transfer techniques. IEEE Trans. Power Electron. 37, 12237–12263 (2022).

    Article 

    Google Scholar
     

  • Miyake, T. et al. Direct conductive bonding of silver electrodes on ultrathin polymer films. ACS Appl. Electron. Mater. 6, 7261–7267 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, G. et al. Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron. 6, 154–163 (2023).

    Article 

    Google Scholar
     

  • Park, Y. G., An, H. S., Kim, J. Y. & Park, J. U. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci. Adv. 5, eaaw2844 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, X. et al. Implant-to-implant wireless networking with metamaterial textiles. Nat. Commun. 14, 4335 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, L. et al. Wireless technologies in flexible and wearable sensing: from materials design, system integration to applications. Adv. Mater. 36, 2400333 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kim, K. K. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2022).


    Google Scholar
     

  • Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klodell, C. T. Jr et al. Worldwide surgical experience with the Paracor HeartNet cardiac restraint device. J. Thorac. Cardiovasc. Surg. 135, 188–195 (2008).

    Article 
    PubMed 

    Google Scholar