• Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

  • Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Can, O. et al. High-temperature topological superconductivity in twisted double-layer copper oxides. Nat. Phys. 17, 519–524 (2021).

    Article 

    Google Scholar
     

  • Song, Z. et al. All Magic Angles in Twisted Bilayer Graphene are Topological. Phys. Rev. Lett. 123, 036401 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lian, B., Liu, Z., Zhang, Y. & Wang, J. Flat Chern Band from Twisted Bilayer MnBi2Te4. Phys. Rev. Lett. 124, 126402 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, L. & Wu, M. Binary Compound Bilayer and Multilayer with Vertical Polarizations: Two-Dimensional Ferroelectrics, Multiferroics, and Nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kim, D. S. et al. Electrostatic moiré potential from twisted hexagonal boron nitride layers. Nat. Mater. 23, 65–70 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Guan, Z. et al. Mechanical force-induced interlayer sliding in interfacial ferroelectrics. Nat. Commun. 16, 986 (2025).

  • Tang, H. et al. On-chip multi-degree-of-freedom control of two-dimensional materials. Nature 632, 1038–1044 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Topological Polar Networks in Twisted Rhombohedral-Stacked Bilayer WSe2 Moiré Superlattices. Nano Lett. 24, 13349–13355 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Niu, R. et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nat. Commun. 13, 6241 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lv, M. et al. Spatially Resolved Polarization Manipulation of Ferroelectricity in Twisted hBN. Adv. Mater. 34, 2203990 (2022).

    Article 

    Google Scholar
     

  • Enaldiev, V. V., Ferreira, F., Magorrian, S. J. & Fal’ko, V. I. Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2 /MoS2 and WSe/MoSe2 bilayers. 2D Mater. 8, 025030 (2021).

    Article 

    Google Scholar
     

  • Zhu, R. et al. Atomic‐Scale Tracking Topological Phase Transition Dynamics of Polar Vortex‐Antivortex Pairs. Adv. Mater. 36, 2312072 (2024).

    Article 

    Google Scholar
     

  • Bennett, D., Chaudhary, G., Slager, R.-J., Bousquet, E. & Ghosez, P. Polar meron-antimeron networks in strained and twisted bilayers. Nat. Commun. 14, 1629 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X.-W. et al. Polarization-driven band topology evolution in twisted MoTe2 and WSe2. Nat. Commun. 15, 4223 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, J. F. Applications of Modern Ferroelectrics. Science 315, 954–959 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, Y. J., Tang, Y. L., Zhu, Y. L. & Ma, X. L. Entangled polarizations in ferroelectrics: A focused review of polar topologies. Acta Mater. 243, 118485 (2023).

    Article 

    Google Scholar
     

  • Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tsang, C. S. et al. Polar and quasicrystal vortex observed in twisted-bilayer molybdenum disulfide. Science 386, 198–205 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • He, R. et al. Ultrafast switching dynamics of the ferroelectric order in stacking-engineered ferroelectrics. Acta Mater. 262, 119416 (2024).

    Article 

    Google Scholar
     

  • Gao, R., Li, Y. & Car, R. Enhanced deep potential model for fast and accurate molecular dynamics: application to the hydrated electron. Phys. Chem. Chem. Phys. 26, 23080–23088 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’ko, V. I. Stacking Domains and Dislocation Networks in Marginally Twisted Bilayers of Transition Metal Dichalcogenides. Phys. Rev. Lett. 124, 206101 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Magorrian, S. J. et al. Multifaceted moiré superlattice physics in twisted WSe 2 bilayers. Phys. Rev. B 104, 125440 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H., Zhang, L., Han, J. & E, W. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, J. et al. DeePMD-kit v2: A software package for deep potential models. J. Chem. Phys. 159, 054801 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems 4441–4451 (Curran Associates Inc., 2018).

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Mater. Sci. 6, 15–50 (1996).

    Article 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Computational Chem. 27, 1787–1799 (2006).

    Article 

    Google Scholar
     

  • Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Duerloo, K.-A. N., Ong, M. T. & Reed, E. J. Intrinsic Piezoelectricity in Two-Dimensional Materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

    Article 

    Google Scholar
     

  • Spaldin, N. A. A beginner’s guide to the modern theory of polarization. J. Solid State Chem. 195, 2–10 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J. & Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Baroni, S. & Resta, R. Ab initio calculation of the macroscopic dielectric constant in silicon. Phys. Rev. B 33, 7017–7021 (1986).

    Article 
    ADS 

    Google Scholar