• Bragg, W. L. & Williams, E. J. The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. A 145, 699–730 (1934).

    Article 
    CAS 

    Google Scholar
     

  • Esaki, L. & Tsu, R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodenough, J. B. & Loeb, A. L. Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Phys. Rev. 98, 391–408 (1955).

    Article 
    CAS 

    Google Scholar
     

  • King, G. & Woodward, P. M. Cation ordering in perovskites. J. Mater. Chem. 20, 5785–5796 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Laar, B., Rietveld, H. M. & Ijdo, D. J. W. Magnetic and crystallographic structures of MexNbS2 and MexTaS2. J. Sol. St. Chem. 3, 154–160 (1971).

    Article 

    Google Scholar
     

  • Parkin, S. S. P. & Friend, R. H. 3d transition-metal intercalates of the niobium and tantalum dichalcogenides. I. Magnetic properties. Philos. Mag. B 41, 65–93 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Xie, L. S., Husremović, S., Gonzalez, O., Craig, I. M. & Bediako, D. K. Structure and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides. J. Am. Chem. Soc. 144, 9525–9542 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morosan, E. et al. Sharp switching of the magnetization in Fe1/4TaS2. Phys. Rev. B 75, 104401 (2007).

    Article 

    Google Scholar
     

  • Checkelsky, J. G., Lee, M., Morosan, E., Cava, R. J. & Ong, N. P. Anomalous Hall effect and magnetoresistance in the layered ferromagnet Fe1/4TaS2: The inelastic regime. Phys. Rev. B 77, 014433 (2008).

    Article 

    Google Scholar
     

  • Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, P. et al. Field-tunable toroidal moment and anomalous Hall effect in noncollinear antiferromagnetic Weyl semimetal Co1/3TaS2. npj Quant. Mater. 7, 42 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Maniv, E. et al. Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders. Nat. Phys. 17, 525–530 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kong, Z. et al. Near room-temperature intrinsic exchange bias in an Fe intercalated ZrSe2 spin glass. J. Am. Chem. Soc. 145, 20041–20052 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koyano, M., Suezawa, M., Watanabe, H. & Inoue, M. Low-field magnetization and AC magnetic susceptibility of spin- and cluster-glasses of itinerant magnet FexTiS2. J. Phys. Soc. Jpn. 63, 1114–1122 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C.-W., Chikara, S., Zapf, V. S. & Morosan, E. Correlations of crystallographic defects and anisotropy with magnetotransport properties in FexTaS2 single crystals (0.23≤x≤0.35). Phys. Rev. B 94, 054406 (2016).

    Article 

    Google Scholar
     

  • Maniv, E. et al. Antiferromagnetic switching driven by the collective dynamics of a coexisting spin glass. Sci. Adv. 7, eabd8452 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dyadkin, V. et al. Structural disorder versus chiral magnetism in Cr1/3NbS2. Phys. Rev. B 91, 184205 (2015).

    Article 

    Google Scholar
     

  • Mangelsen, S. et al. Interplay of sample composition and anomalous Hall effect in CoxNbS2. Phys. Rev. B 103, 184408 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kousaka, Y. et al. An emergence of chiral helimagnetism or ferromagnetism governed by Cr intercalation in a dichalcogenide CrNb3S6. APL Mater. 10, 090704 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hall, A. E. et al. Comparative study of the structural and magnetic properties of Mn1/3NbS2 and Cr1/3NbS2. Phys. Rev. Mater. 6, 024407 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Park, P. et al. Composition dependence of bulk properties in the Co-intercalated transition metal dichalcogenide Co1/3TaS2. Phys. Rev. B 109, L060403 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Goodge, B. H., Gonzalez, O., Xie, L. S. & Bediako, D. K. Consequences and control of multiscale order/disorder in chiral magnetic textures. ACS Nano 17, 19865–19876 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawrence, E. A. et al. Fe site order and magnetic properties of Fe1/4NbS2. Inorg. Chem. 62, 18179–18188 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).


    Google Scholar
     

  • An, Y. et al. Bulk properties of the chiral metallic triangular antiferromagnets Ni1/3NbS2 and Ni1/3TaS2. Phys. Rev. B 108, 054418 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mandujano, H. C. et al. Itinerant A-type antiferromagnetic order in Co1/4TaSe2. Phys. Rev. B 110, 144420 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Regmi, R. B. et al. Altermagnetism in the layered intercalated transition metal dichalcogenide CoNb4Se8. Nat. Commun. 16, 4399 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mito, M. et al. Observation of orbital angular momentum in the chiral magnet CrNb3S6 by soft x-ray magnetic circular dichroism. Phys. Rev. B 99, 174439 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Miyadai, T. et al. Magnetic properties of Cr1/3NbS2. J. Phys. Soc. Jpn. 52, 1394–1401 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Togawa, Y. et al. Chiral magnetic soliton lattice on a chiral helimagnet. Phys. Rev. Lett. 108, 107202 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Chiral helimagnetism and one-dimensional magnetic solitons in a Cr-intercalated transition metal dichalcogenide. Adv. Mater. 33, 2101131 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obeysekera, D., Gamage, K., Gao, Y., Cheong, S. & Yang, J. The magneto-transport properties of Cr1/3TaS2 with chiral magnetic solitons. Adv. Electron. Mater. 7, 2100424 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishizuka, H. & Nagaosa, N. Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets. Sci. Adv. 4, eaap9962 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wills, A. S. A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh). Physica B 276-278, 680–681 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Park, P. et al. Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2. Nat. Commun. 14, 8346 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taillefer, L. Fermi surface reconstruction in high-Tc superconductors. J. Phys. Condens. Matter 21, 164212 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Gurung, G., Shao, D.-F., Paudel, T. R. & Tsymbal, E. Y. Anomalous Hall conductivity of noncollinear magnetic antiperovskites. Phys. Rev. Mater. 3, 044409 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fan, S. et al. Excitations of intercalated metal monolayers in transition metal dichalcogenides. Nano Lett. 21, 99–106 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Erodici, M. P. et al. Bridging structure, magnetism, and disorder in iron-intercalated niobium diselenide, FexNbSe2, below x = 0.25. J. Phys. Chem. C 127, 9787–9795 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xie, L. S. et al. Comparative electronic structures of the chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2. Chem. Mater. 35, 7239–7251 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ophus, C. Four-dimensional scanning transmission electron microscopy: From scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohkoshi, S.-i, Iyoda, T., Fujishima, A. & Hashimoto, K. Magnetic properties of mixed ferro-ferrimagnets composed of Prussian blue analogs. Phys. Rev. B 56, 11642–11652 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Mydosh, J. A. Spin Glasses: An Experimental Introduction 1st edition, Vol. 280 (CRC Press, 1993).

  • Arrott, A. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108, 1394–1396 (1957).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of 2H-TaS2. Phys. Rev. B 96, 125103 (2017).

    Article 

    Google Scholar
     

  • Ko, K.-T. et al. RKKY ferromagnetism with Ising-like spin states in intercalated Fe1/4TaS2. Phys. Rev. Lett. 107, 247201 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Sirica, N. et al. The nature of ferromagnetism in the chiral helimagnet Cr1/3NbS2. Commun. Phys. 3, 65 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X. P. et al. Visualizing the out-of-plane electronic dispersions in an intercalated transition metal dichalcogenide. Phys. Rev. B 105, L121107 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Popčević, P. et al. Role of intercalated cobalt in the electronic structure of Co1/3NbS2. Phys. Rev. B 105, 155114 (2022).

    Article 

    Google Scholar
     

  • Edwards, B. et al. Chemical trends of the bulk and surface termination-dependent electronic structure of metal-intercalated transition metal dichalcogenides. Chem. Mater. 36, 7117–7126 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boswell, F. W., Prodan, A., Vaughan, W. R. & Corbett, J. M. On the ordering of Fe atoms in FexNbS2. Phys. Status Solidi A 45, 469–481 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Craig, I. M. et al. Modeling the superlattice phase diagram of transition metal intercalation in bilayer 2H-TaS2. J. Am. Chem. Soc. 147, 13629–13641 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article 

    Google Scholar
     

  • Dietl, T. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J. Phys. Soc. Jpn. 77, 031005 (2008).

    Article 

    Google Scholar
     

  • Liu, M. et al. Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys. Rev. Lett. 108, 036805 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bornstein, A. C. et al. Out-of-plane spin-orientation dependent magnetotransport properties in the anisotropic helimagnet Cr1/3NbS2. Phys. Rev. B 91, 184401 (2015).

    Article 

    Google Scholar
     

  • Mayoh, D. A. et al. Giant topological and planar Hall effect in Cr1/3NbS2. Phys. Rev. Res. 4, 013134 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hardy, W. J. et al. Very large magnetoresistance in Fe0.28TaS2 single crystals. Phys. Rev. B 91, 054426 (2015).

    Article 

    Google Scholar
     

  • Nair, N. L. et al. Electrical switching in a magnetically intercalated transition metal dichalcogenide. Nat. Mater. 19, 153–157 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, S. et al. Highly tunable magnetic phases in transition-metal dichalcogenide Fe1/3+δNbS2. Phys. Rev. X 12, 021003 (2022).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Horibe, Y. et al. Color theorems, chiral domain topology, and magnetic properties of FexTaS2. J. Am. Chem. Soc. 136, 8368–8373 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, K. et al. Topological spin/structure couplings in layered chiral magnet Cr1/3TaS2: the discovery of spiral magnetic superstructure. Proc. Natl. Acad. Sci. USA 118, e2023337118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voges, C. & Pfnür, H. Experimental determination of the phase-transition critical exponents α and η by integrating methods. Phys. Rev. B 57, 3345–3355 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Cryst. A 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Cryst. 44, 1281–1284 (2011).

    Article 

    Google Scholar
     

  • Arnold, O. et al. Mantid—data analysis and visualization package for neutron scattering and μSR experiments. Nucl. Instrum. Methods Phys. Res. A 764, 156–166 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article 

    Google Scholar
     

  • Savitzky, B. H. et al. py4DSTEM: A software package for four-dimensional scanning transmission electron microscopy data analysis. Microsc. Microanal. 27, 712–743 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stansbury, C. & Lanzara, A. PyARPES: An analysis framework for multimodal angle-resolved photoemission spectroscopies. SoftwareX 11, 100472 (2020).

    Article 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).

    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article 

    Google Scholar
     

  • van Setten, M. J. et al. The pseudodojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Xie, L. S. et al. Data for anomalous Hall effect from inter-superlattice scattering in a noncollinear antiferromagnet. Zenodo https://doi.org/10.5281/zenodo.15522287 (2024).