Bragg, W. L. & Williams, E. J. The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. A 145, 699–730 (1934).
Esaki, L. & Tsu, R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970).
Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171 (1997).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).
Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).
Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).
Goodenough, J. B. & Loeb, A. L. Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Phys. Rev. 98, 391–408 (1955).
King, G. & Woodward, P. M. Cation ordering in perovskites. J. Mater. Chem. 20, 5785–5796 (2010).
Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).
Van Laar, B., Rietveld, H. M. & Ijdo, D. J. W. Magnetic and crystallographic structures of MexNbS2 and MexTaS2. J. Sol. St. Chem. 3, 154–160 (1971).
Parkin, S. S. P. & Friend, R. H. 3d transition-metal intercalates of the niobium and tantalum dichalcogenides. I. Magnetic properties. Philos. Mag. B 41, 65–93 (1980).
Xie, L. S., Husremović, S., Gonzalez, O., Craig, I. M. & Bediako, D. K. Structure and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides. J. Am. Chem. Soc. 144, 9525–9542 (2022).
Morosan, E. et al. Sharp switching of the magnetization in Fe1/4TaS2. Phys. Rev. B 75, 104401 (2007).
Checkelsky, J. G., Lee, M., Morosan, E., Cava, R. J. & Ong, N. P. Anomalous Hall effect and magnetoresistance in the layered ferromagnet Fe1/4TaS2: The inelastic regime. Phys. Rev. B 77, 014433 (2008).
Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).
Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).
Park, P. et al. Field-tunable toroidal moment and anomalous Hall effect in noncollinear antiferromagnetic Weyl semimetal Co1/3TaS2. npj Quant. Mater. 7, 42 (2022).
Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023).
Maniv, E. et al. Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders. Nat. Phys. 17, 525–530 (2021).
Kong, Z. et al. Near room-temperature intrinsic exchange bias in an Fe intercalated ZrSe2 spin glass. J. Am. Chem. Soc. 145, 20041–20052 (2023).
Koyano, M., Suezawa, M., Watanabe, H. & Inoue, M. Low-field magnetization and AC magnetic susceptibility of spin- and cluster-glasses of itinerant magnet FexTiS2. J. Phys. Soc. Jpn. 63, 1114–1122 (1994).
Chen, C.-W., Chikara, S., Zapf, V. S. & Morosan, E. Correlations of crystallographic defects and anisotropy with magnetotransport properties in FexTaS2 single crystals (0.23≤x≤0.35). Phys. Rev. B 94, 054406 (2016).
Maniv, E. et al. Antiferromagnetic switching driven by the collective dynamics of a coexisting spin glass. Sci. Adv. 7, eabd8452 (2021).
Dyadkin, V. et al. Structural disorder versus chiral magnetism in Cr1/3NbS2. Phys. Rev. B 91, 184205 (2015).
Mangelsen, S. et al. Interplay of sample composition and anomalous Hall effect in CoxNbS2. Phys. Rev. B 103, 184408 (2021).
Kousaka, Y. et al. An emergence of chiral helimagnetism or ferromagnetism governed by Cr intercalation in a dichalcogenide CrNb3S6. APL Mater. 10, 090704 (2022).
Hall, A. E. et al. Comparative study of the structural and magnetic properties of Mn1/3NbS2 and Cr1/3NbS2. Phys. Rev. Mater. 6, 024407 (2022).
Park, P. et al. Composition dependence of bulk properties in the Co-intercalated transition metal dichalcogenide Co1/3TaS2. Phys. Rev. B 109, L060403 (2024).
Goodge, B. H., Gonzalez, O., Xie, L. S. & Bediako, D. K. Consequences and control of multiscale order/disorder in chiral magnetic textures. ACS Nano 17, 19865–19876 (2023).
Lawrence, E. A. et al. Fe site order and magnetic properties of Fe1/4NbS2. Inorg. Chem. 62, 18179–18188 (2023).
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).
An, Y. et al. Bulk properties of the chiral metallic triangular antiferromagnets Ni1/3NbS2 and Ni1/3TaS2. Phys. Rev. B 108, 054418 (2023).
Mandujano, H. C. et al. Itinerant A-type antiferromagnetic order in Co1/4TaSe2. Phys. Rev. B 110, 144420 (2024).
Regmi, R. B. et al. Altermagnetism in the layered intercalated transition metal dichalcogenide CoNb4Se8. Nat. Commun. 16, 4399 (2025).
Mito, M. et al. Observation of orbital angular momentum in the chiral magnet CrNb3S6 by soft x-ray magnetic circular dichroism. Phys. Rev. B 99, 174439 (2019).
Miyadai, T. et al. Magnetic properties of Cr1/3NbS2. J. Phys. Soc. Jpn. 52, 1394–1401 (1983).
Togawa, Y. et al. Chiral magnetic soliton lattice on a chiral helimagnet. Phys. Rev. Lett. 108, 107202 (2012).
Zhang, C. et al. Chiral helimagnetism and one-dimensional magnetic solitons in a Cr-intercalated transition metal dichalcogenide. Adv. Mater. 33, 2101131 (2021).
Obeysekera, D., Gamage, K., Gao, Y., Cheong, S. & Yang, J. The magneto-transport properties of Cr1/3TaS2 with chiral magnetic solitons. Adv. Electron. Mater. 7, 2100424 (2021).
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).
Ishizuka, H. & Nagaosa, N. Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets. Sci. Adv. 4, eaap9962 (2018).
Wills, A. S. A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh). Physica B 276-278, 680–681 (2000).
Park, P. et al. Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2. Nat. Commun. 14, 8346 (2023).
Taillefer, L. Fermi surface reconstruction in high-Tc superconductors. J. Phys. Condens. Matter 21, 164212 (2009).
Gurung, G., Shao, D.-F., Paudel, T. R. & Tsymbal, E. Y. Anomalous Hall conductivity of noncollinear magnetic antiperovskites. Phys. Rev. Mater. 3, 044409 (2019).
Fan, S. et al. Excitations of intercalated metal monolayers in transition metal dichalcogenides. Nano Lett. 21, 99–106 (2021).
Erodici, M. P. et al. Bridging structure, magnetism, and disorder in iron-intercalated niobium diselenide, FexNbSe2, below x = 0.25. J. Phys. Chem. C 127, 9787–9795 (2023).
Xie, L. S. et al. Comparative electronic structures of the chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2. Chem. Mater. 35, 7239–7251 (2023).
Ophus, C. Four-dimensional scanning transmission electron microscopy: From scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).
Ohkoshi, S.-i, Iyoda, T., Fujishima, A. & Hashimoto, K. Magnetic properties of mixed ferro-ferrimagnets composed of Prussian blue analogs. Phys. Rev. B 56, 11642–11652 (1997).
Mydosh, J. A. Spin Glasses: An Experimental Introduction 1st edition, Vol. 280 (CRC Press, 1993).
Arrott, A. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108, 1394–1396 (1957).
Zhao, J. et al. Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of 2H-TaS2. Phys. Rev. B 96, 125103 (2017).
Ko, K.-T. et al. RKKY ferromagnetism with Ising-like spin states in intercalated Fe1/4TaS2. Phys. Rev. Lett. 107, 247201 (2011).
Sirica, N. et al. The nature of ferromagnetism in the chiral helimagnet Cr1/3NbS2. Commun. Phys. 3, 65 (2020).
Yang, X. P. et al. Visualizing the out-of-plane electronic dispersions in an intercalated transition metal dichalcogenide. Phys. Rev. B 105, L121107 (2022).
Popčević, P. et al. Role of intercalated cobalt in the electronic structure of Co1/3NbS2. Phys. Rev. B 105, 155114 (2022).
Edwards, B. et al. Chemical trends of the bulk and surface termination-dependent electronic structure of metal-intercalated transition metal dichalcogenides. Chem. Mater. 36, 7117–7126 (2024).
Boswell, F. W., Prodan, A., Vaughan, W. R. & Corbett, J. M. On the ordering of Fe atoms in FexNbS2. Phys. Status Solidi A 45, 469–481 (1978).
Craig, I. M. et al. Modeling the superlattice phase diagram of transition metal intercalation in bilayer 2H-TaS2. J. Am. Chem. Soc. 147, 13629–13641 (2025).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Dietl, T. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J. Phys. Soc. Jpn. 77, 031005 (2008).
Liu, M. et al. Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys. Rev. Lett. 108, 036805 (2012).
Bornstein, A. C. et al. Out-of-plane spin-orientation dependent magnetotransport properties in the anisotropic helimagnet Cr1/3NbS2. Phys. Rev. B 91, 184401 (2015).
Mayoh, D. A. et al. Giant topological and planar Hall effect in Cr1/3NbS2. Phys. Rev. Res. 4, 013134 (2022).
Hardy, W. J. et al. Very large magnetoresistance in Fe0.28TaS2 single crystals. Phys. Rev. B 91, 054426 (2015).
Nair, N. L. et al. Electrical switching in a magnetically intercalated transition metal dichalcogenide. Nat. Mater. 19, 153–157 (2020).
Wu, S. et al. Highly tunable magnetic phases in transition-metal dichalcogenide Fe1/3+δNbS2. Phys. Rev. X 12, 021003 (2022).
Horibe, Y. et al. Color theorems, chiral domain topology, and magnetic properties of FexTaS2. J. Am. Chem. Soc. 136, 8368–8373 (2014).
Du, K. et al. Topological spin/structure couplings in layered chiral magnet Cr1/3TaS2: the discovery of spiral magnetic superstructure. Proc. Natl. Acad. Sci. USA 118, e2023337118 (2021).
Voges, C. & Pfnür, H. Experimental determination of the phase-transition critical exponents α and η by integrating methods. Phys. Rev. B 57, 3345–3355 (1998).
Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Cryst. A 71, 3–8 (2015).
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015).
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Cryst. 44, 1281–1284 (2011).
Arnold, O. et al. Mantid—data analysis and visualization package for neutron scattering and μSR experiments. Nucl. Instrum. Methods Phys. Res. A 764, 156–166 (2014).
Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).
Savitzky, B. H. et al. py4DSTEM: A software package for four-dimensional scanning transmission electron microscopy data analysis. Microsc. Microanal. 27, 712–743 (2021).
Stansbury, C. & Lanzara, A. PyARPES: An analysis framework for multimodal angle-resolved photoemission spectroscopies. SoftwareX 11, 100472 (2020).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
van Setten, M. J. et al. The pseudodojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).
Xie, L. S. et al. Data for anomalous Hall effect from inter-superlattice scattering in a noncollinear antiferromagnet. Zenodo https://doi.org/10.5281/zenodo.15522287 (2024).