• Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Moody, G. et al. 2022 roadmap on integrated quantum photonics. J. Phys.: Photon. 4, 012501 (2022).


    Google Scholar
     

  • Roelkens, G. et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev. 4, 751–779 (2010).


    Google Scholar
     

  • Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Rizzo, A. et al. Massively scalable Kerr Comb-driven silicon photonic link. Nat. Photon. 17, 781–790 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Li, B., Lin, Q. & Li, M. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature 620, 316–322 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, R. et al. Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photon. 17, 306–314 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Krause, A. G., Winger, M., Blasius, T. D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photon. 6, 768–772 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Lai, Y.-H. et al. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photon. 14, 345–349 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat. Biomed. Eng. 4, 223–231 (2020).

    Article 

    Google Scholar
     

  • Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 6, 473–478 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Morichetti, F. et al. Roughness induced backscattering in optical silicon waveguides. Phys. Rev. Lett. 104, 033902 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Williamson, I. A. et al. Integrated nonreciprocal photonic devices with dynamic modulation. Proc. IEEE 108, 1759–1784 (2020).

    Article 

    Google Scholar
     

  • Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Yu, M. et al. Integrated electro-optic isolator on thin-film lithium niobate. Nat. Photon. 17, 666–671 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article 

    Google Scholar
     

  • White, A. D. et al. Integrated passive nonlinear optical isolators. Nat. Photon. 17, 143–149 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photon. 15, 822–827 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tian, H. et al. Magnetic-free silicon nitride integrated optical isolator. Nat. Photon. 15, 828–836 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Herrmann, J. F. et al. Mirror symmetric on-chip frequency circulation of light. Nat. Photon. 16, 603–608 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, Y. et al. Nonreciprocal dissipation engineering via strong coupling with a continuum of modes. Phys. Rev. 14, 021002 (2024).

    Article 

    Google Scholar
     

  • Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based lidar. Nat. Photon. 14, 369–374 (2020).

    Article 
    ADS 

    Google Scholar