100,000 Genomes Project Pilot Investigators, Smedley D, Smith KR, Martin A, Thomas EA, McDonagh EM, et al. 100,000 genomes pilot on rare-disease diagnosis in health care—preliminary report. N Engl J Med. 2021;385:1868–80.
Ellingford JM, Ahn JW, Bagnall RD, Baralle D, Barton S, Campbell C, et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med. 2022;14:73.
Wieder N, D’Souza EN, Martin-Geary AC, Lassen FH, Talbot-Martin J, Fernandes M, et al. Differences in 5’untranslated regions highlight the importance of translational regulation of dosage sensitive genes. Genome Biol. 2024;25:111.
Wright CF, Quaife NM, Ramos-Hernández L, Danecek P, Ferla MP, Samocha KE, et al. Non-coding region variants upstream of MEF2C cause severe developmental disorder through three distinct loss-of-function mechanisms. Am J Hum Genet. 2021;108:1083–94.
Dueñas Rey A, del Pozo Valero M, Bouckaert M, Wood KA, Van den Broeck F, Daich Varela M, et al. Combining a prioritization strategy and functional studies nominates 5’UTR variants underlying inherited retinal disease. Genome Med. 2024;16:7.
Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions. WIREs RNA. 2018;9:e1474.
Griesemer D, Xue JR, Reilly SK, Ulirsch JC, Kukreja K, Davis JR, et al. Genome-wide functional screen of 3′UTR variants uncovers causal variants for human disease and evolution. Cell. 2021;184:5247–60.e19.
Shirokikh NE, Preiss T. Translation initiation by cap-dependent ribosome recruitment: recent insights and open questions. Wiley Interdiscip Rev RNA. 2018;9:e1473.
Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–6.
Floor SN, Doudna JA. Tunable protein synthesis by transcript isoforms in human cells. eLife. 2016;5:e10921.
Mayr C. Regulation by 3′-untranslated regions. Annu Rev Genet. 2017;51:171–94.
Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19:327–41.
Chothani SP, Adami E, Widjaja AA, Langley SR, Viswanathan S, Pua CJ, et al. A high-resolution map of human RNA translation. Mol Cell. 2022 [cited 2022 Jul 25]. Available from: https://www.cell.com/molecular-cell/abstract/S1097-2765(22)00606-2.
Gunišová S, Hronová V, Mohammad MP, Hinnebusch AG, Valášek LS. Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiol Rev. 2018;42:165–92.
Zhang H, Wang Y, Wu X, Tang X, Wu C, Lu J. Determinants of genome-wide distribution and evolution of uORFs in eukaryotes. Nat Commun. 2021;12:1076.
Kozak M. An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987;15:8125–48.
Churbanov A, Rogozin IB, Babenko VN, Ali H, Koonin EV. Evolutionary conservation suggests a regulatory function of AUG triplets in 5′-UTRs of eukaryotic genes. Nucleic Acids Res. 2005;33:5512–20.
Whiffin N, Karczewski KJ, Zhang X, Chothani S, Smith MJ, Evans DG, et al. Characterising the loss-of-function impact of 5’ untranslated region variants in 15,708 individuals. Nat Commun. 2020;11:2523.
Ferdinandusse S, te Brinke H, Ruiter JPN, Haasjes J, Oostheim W, van, et al. A mutation creating an upstream translation initiation codon in SLC22A5 5′UTR is a frequent cause of primary carnitine deficiency. Hum Mutat. 2019;40:1899–904.
Coursimault J, Rovelet-Lecrux A, Cassinari K, Brischoux-Boucher E, Saugier-Veber P, Goldenberg A, et al. uORF-introducing variants in the 5′UTR of the NIPBL gene as a cause of Cornelia de Lange syndrome. Hum Mutat. 2022;43:1239–48.
Zhou Y, Koelling N, Fenwick AL, McGowan SJ, Calpena E, Wall SA, et al. Disruption of TWIST1 translation by 5′ UTR variants in Saethre-Chotzen syndrome. Hum Mutat. 2018;39:1360–5.
Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, et al. A Single Recurrent Mutation in the 5′-UTR of IFITM5 Causes Osteogenesis Imperfecta Type V. Am J Hum Genet. 2012;91:343–8.
Schulz J, Mah N, Neuenschwander M, Kischka T, Ratei R, Schlag PM, et al. Loss-of-function uORF mutations in human malignancies. Sci Rep. 2018;8:2395.
Ghilardi N, Wiestner A, Kikuchi M, Ohsaka A, Skoda RC. Hereditary thrombocythaemia in a Japanese family is caused by a novel point mutation in the thrombopoietin gene. Br J Haematol. 1999;107:310–6.
Evans DG, Bowers N, Burkitt-Wright E, Miles E, Garg S, Scott-Kitching V, et al. Comprehensive RNA analysis of the NF1 gene in classically affected NF1 affected individuals meeting NIH criteria has high sensitivity and mutation negative testing is reassuring in isolated cases with pigmentary features only. EBioMedicine. 2016;7:212–20.
Rosenstiel P, Huse K, Franke A, Hampe J, Reichwald K, Platzer C, et al. Functional characterization of two novel 5’ untranslated exons reveals a complex regulation of NOD2 protein expression. BMC Genom. 2007;8:472.
Filatova AY, Vasilyeva TA, Marakhonov AV, Sukhanova NV, Voskresenskaya AA, Zinchenko RA, et al. Upstream ORF frameshift variants in the PAX6 5’UTR cause congenital aniridia. Hum Mutat. 2021;42:1053–65.
Li M, Yin M, Yang L, Chen Z, Du P, Sun L, et al. A novel splicing mutation in 5’UTR of GJB1 causes X-linked Charcot—Marie–tooth disease. Mol Genet Genom Med. 2023;11:e2108.
Bicknell AA, Cenik C, Chua HN, Roth FP, Moore MJ. Introns in UTRs: Why we should stop ignoring them. BioEssays. 2012;34:1025–34.
Nagy E, Maquat LE. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci. 1998;23:198–9.
Pezeshkpoor B, Berkemeier AC, Czogalla KJ, Oldenburg J, El-Maarri O. Evidence of pathogenicity of a mutation in 3’ untranslated region causing mild haemophilia A. Haemophilia. 2016 [cited 2023 Jul 13];22. Available from: https://pubmed.ncbi.nlm.nih.gov/27216882/.
Hellen CUT, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001;15:1593–612.
Hudder A, Werner R. Analysis of a Charcot-Marie-Tooth disease mutation reveals an essential internal ribosome entry site element in the connexin-32 gene *. J Biol Chem. 2000;275:34586–91.
Grosz BR, Svaren J, Perez-Siles G, Nicholson GA, Kennerson ML. Revisiting the pathogenic mechanism of the GJB1 5’ UTR c.-103C > T mutation causing CMTX1. Neurogenetics. 2021;22:149–60.
Cobbold LC, Wilson LA, Sawicka K, King HA, Kondrashov AV, Spriggs KA, et al. Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from increased interactions with and expression of PTB-1 and YB-1. Oncogene. 2010;29:2884–91.
Swinnen B, Robberecht W, Van Den Bosch L. RNA toxicity in non-coding repeat expansion disorders. EMBO J. 2020;39:e101112.
Paulson H. Repeat expansion diseases. Handb Clin Neurol. 2018;147:105–23.
Zhou Y, Kumari D, Sciascia N, Usdin K. CGG-repeat dynamics and FMR1 gene silencing in fragile X syndrome stem cells and stem cell-derived neurons. Mol Autism. 2016;7:42.
Xi J, Wang X, Yue D, Dou T, Wu Q, Lu J, et al. 5′ UTR CGG repeat expansion in GIPC1 is associated with oculopharyngodistal myopathy. Brain. 2021;144:601–14.
Tietze JK, Pfob M, Eggert M, von Preußen A, Mehraein Y, Ruzicka T, et al. A non-coding mutation in the 5’ untranslated region of patched homologue 1 predisposes to basal cell carcinoma. Exp Dermatol. 2013;22:834–5.
Timchenko LT, Miller JW, Timchenko NA, DeVore DR, Datar KV, Lin L, et al. Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res. 1996;24:4407–14.
Cruchten RTP, van, Wieringa B, Wansink DG. Expanded CUG repeats in DMPK transcripts adopt diverse hairpin conformations without influencing the structure of the flanking sequences. RNA. 2019;25:481–95.
Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ, et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet. 2009;5:e1000600.
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol. 2018;19:621–37.
Evans DGR, van Veen EM, Byers HJ, Wallace AJ, Ellingford JM, Beaman G, et al. A dominantly inherited 5′ UTR variant causing methylation-associated silencing of BRCA1 as a cause of breast and ovarian cancer. Am J Hum Genet. 2018;103:213–20.
de Jong VMT, Pruntel R, Steenbruggen TG, Bleeker FE, Nederlof P, Hogervorst FBL, et al. Identifying the BRCA1 c.-107A > T variant in Dutch patients with a tumor BRCA1 promoter hypermethylation. Fam Cancer. 2023;22:151–4.
Andrzejewska A, Zawadzka M, Pachulska-Wieczorek K. On the way to understanding the interplay between the RNA structure and functions in cells: a genome-wide perspective. Int J Mol Sci. 2020;21:6770.
Mw H, Mu M, Nc A. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004 [cited 2023 Aug 9];117. Available from: https://pubmed.ncbi.nlm.nih.gov/15109490/.
Luscieti S, Tolle G, Aranda J, Campos CB, Risse F, Morán É, et al. Novel mutations in the ferritin-L iron-responsive element that only mildly impair IRP binding cause hereditary hyperferritinaemia cataract syndrome. Orphanet J Rare Dis. 2013;8:30.
Suganuma M, Kono M, Yamanaka M, Akiyama M. Pathogenesis of a variant in the 5′ untranslated region of ADAR1 in dyschromatosis symmetrica hereditaria. Pigment Cell Melanoma Res. 2020;33:591–600.
Maiti B, Arbogast S, Allamand V, Moyle MW, Anderson CB, Richard P, et al. A mutation in the SEPN1 selenocysteine redefinition element (SRE) reduces selenocysteine incorporation and leads to SEPN1-related myopathy. Hum Mutat. 2009;30:411–6.
Nicolle R, Altin N, Siquier-Pernet K, Salignac S, Blanc P, Munnich A, et al. A non-coding variant in the Kozak sequence of RARS2 strongly decreases protein levels and causes pontocerebellar hypoplasia. BMC Med Genom. 2023;16:143.
Curinha A, Oliveira Braz S, Pereira-Castro I, Cruz A, Moreira A. Implications of polyadenylation in health and disease. Nucleus. 2014;5:508–19.
Johnston JJ, Williamson KA, Chou CM, Sapp JC, Ansari M, Chapman HM, et al. NAA10 polyadenylation signal variants cause syndromic microphthalmia. J Med Genet. 2019;56:444–52.
Gehring NH, Frede U, Neu-Yilik G, Hundsdoerfer P, Vetter B, Hentze MW, et al. Increased efficiency of mRNA 3’ end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nat Genet. 2001;28:389–92.
Morales J, Russell JE, Liebhaber SA. Destabilization of human α-globin mRNA by translation anti-termination is controlled during erythroid differentiation and is paralleled by phased shortening of the poly(A) tail *. J Biol Chem. 1997;272:6607–13.
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018 [cited 2024 Feb 7];9. Available from: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2018.00402.
Jedlickova J, Vajter M, Barta T, Black GCM, Perveen R, Mares J, et al. MIR204 n.37C>T variant as a cause of chorioretinal dystrophy variably associated with iris coloboma, early-onset cataracts and congenital glaucoma. Clin Genet. 2023;104:418–26.
Verdura E, Hervé D, Bergametti F, Jacquet C, Morvan T, Prieto-Morin C, et al. Disruption of a miR-29 binding site leading to COL4A1 upregulation causes pontine autosomal dominant microangiopathy with leukoencephalopathy. Ann Neurol. 2016;80:741–53.
Beetz C, Schüle R, Deconinck T, Tran-Viet KN, Zhu H, Kremer BPH, et al. REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain. 2008;131:1078–86.
Zhang X, Wakeling M, Ware J, Whiffin N. Annotating high-impact 5′untranslated region variants with the UTRannotator. Bioinformatics. 2021;37:1171–3.
Soukarieh O, Tillet E, Proust C, Dupont C, Jaspard-Vinassa B, Soubrier F, et al. uAUG creating variants in the 5’UTR of ENG causing Hereditary Hemorrhagic Telangiectasia. NPJ Genom Med. 2023;8:32.
Ruggieri A, Ramachandran N, Wang P, Haan E, Kneebone C, Manavis J, et al. Non-coding VMA21 deletions cause X-linked myopathy with excessive autophagy. Neuromuscul Disord. 2015;25:207–11.
Ravenscroft G, Miyatake S, Lehtokari VL, Todd EJ, Vornanen P, Yau KS, et al. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet. 2013;93:6–18.
Dofash LNH, Monahan GV, Servián-Morilla E, Rivas E, Faiz F, Sullivan P, et al. A KLHL40 3’ UTR splice-altering variant causes milder NEM8, an under-appreciated disease mechanism. Hum Mol Genet. 2023;32:1127–36.
Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F, Wolman A, et al. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. Nat Genet. 2018;50:1327–34.
Gasperini M, Tome JM, Shendure J. Towards a comprehensive catalogue of validated and target-linked human enhancers. Nat Rev Genet. 2020;21:292–310.
Fang Z, Rajewsky N. The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS ONE. 2011;6:e18067.
Michel AM, Andreev DE, Baranov PV. Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning. BMC Bioinform. 2014;15:380.
Fowler DM, Adams DJ, Gloyn AL, Hahn WC, Marks DS, Muffley LA, et al. An atlas of variant effects to understand the genome at nucleotide resolution. Genome Biol. 2023;24:147.