• Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article 

    Google Scholar
     

  • Geier, S. et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374, 1149–1152 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wu, X. et al. A concise review of Rydberg atom based quantum computation and quantum simulation. Chin. Phys. B 30, 020305 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Li, J.-R. et al. Tunable itinerant spin dynamics with polar molecules. Nature 614, 70–74 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Mivehvar, F., Piazza, F., Donner, T. & Ritsch, H. Cavity QED with quantum gases: new paradigms in many-body physics. Adv. Phys. 70, 1–153 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Choi, J. et al. Robust dynamic Hamiltonian engineering of many-body spin systems. Phys. Rev. X 10, 031002 (2020).


    Google Scholar
     

  • Munns, J. H., Orphal-Kobin, L., Pieplow, G. & Schröder, T. in Photonic Quantum Technologies: Science and Applications (ed. Benyoucef, M.) Ch. 19 (Wiley, 2023).

  • Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411–425 (2020).

    Article 

    Google Scholar
     

  • Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Steinert, L.-M. et al. Spatially tunable spin interactions in neutral atom arrays. Phys. Rev. Lett. 130, 243001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Sørensen, A. S. & Mølmer, K. Entangling atoms in bad cavities. Phys. Rev. A 66, 022314 (2002).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Borregaard, J., Davis, E. J., Bentsen, G. S., Schleier-Smith, M. H. & Sørensen, A. S. One- and two-axis squeezing of atomic ensembles in optical cavities. New J. Phys. 19, 093021 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y.-C., Zhou, X.-F., Zhou, X., Guo, G.-C. & Zhou, Z.-W. Cavity-assisted single-mode and two-mode spin-squeezed states via phase-locked atom-photon coupling. Phys. Rev. Lett. 118, 083604 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Luo, C. et al. Momentum-exchange interactions in a Bragg atom interferometer suppress Doppler dephasing. Science 384, 551–556 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Shirasaki, M. & Haus, H. A. Squeezing of pulses in a nonlinear interferometer. J. Opt. Soc. Am. B 7, 30–34 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463–466 (2008).

    Article 

    Google Scholar
     

  • Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Orientation-dependent entanglement lifetime in a squeezed atomic clock. Phys. Rev. Lett. 104, 250801 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kroeze, R. M., Guo, Y., Vaidya, V. D., Keeling, J. & Lev, B. L. Spinor self-ordering of a quantum gas in a cavity. Phys. Rev. Lett. 121, 163601 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Davis, E. J. et al. Protecting spin coherence in a tunable Heisenberg model. Phys. Rev. Lett. 125, 060402 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Song, C. et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574–577 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kalinin, N. et al. Quantum-enhanced interferometer using Kerr squeezing. Nanophotonics 12, 2945–2952 (2023).

    Article 

    Google Scholar
     

  • Muessel, W. et al. Twist-and-turn spin squeezing in Bose-Einstein condensates. Phys. Rev. A 92, 023603 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Chaudhury, S. et al. Quantum control of the hyperfine spin of a Cs atom ensemble. Phys. Rev. Lett. 99, 163002 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z. et al. Improving metrology with quantum scrambling. Science 380, 1381–1384 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Wang, M. et al. Two-axis-twisting spin squeezing by multipass quantum erasure. Phys. Rev. A 96, 013823 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hamley, C. D., Gerving, C. S., Hoang, T. M., Bookjans, E. M. & Chapman, M. S. Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys. 8, 305–308 (2012).

    Article 

    Google Scholar
     

  • Luo, X.-Y. et al. Deterministic entanglement generation from driving through quantum phase transitions. Science 355, 620–623 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Miller, C. et al. Two-axis twisting using Floquet-engineered XYZ spin models with polar molecules. Nature 633, 332–337 (2024).

    Article 

    Google Scholar
     

  • Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Finger, F. et al. Spin- and momentum-correlated atom pairs mediated by photon exchange and seeded by vacuum fluctuations. Phys. Rev. Lett. 132, 093402 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Giltner, D. M., McGowan, R. W. & Lee, S. A. Atom interferometer based on Bragg scattering from standing light waves. Phys. Rev. Lett. 75, 2638–2641 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Parker, R. H., Yu, C., Zhong, W., Estey, B. & Müller, H. Measurement of the fine-structure constant as a test of the standard model. Science 360, 191–195 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Morel, L., Yao, Z., Cladé, P. & Guellati-Khélifa, S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 588, 61–65 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Robinson, J. M. et al. Direct comparison of two spin-squeezed optical clock ensembles at the 10−17 level. Nat. Phys. 20, 208–213 (2024).

    Article 

    Google Scholar
     

  • Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104, 093602 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Muessel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. K. Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014).

    Article 
    ADS 

    Google Scholar
     

  • McGrew, W. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Norcia, M. A. et al. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser. Science 361, 259–262 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Muñoz Arias, M. H., Deutsch, I. H. & Poggi, P. M. Phase-space geometry and optimal state preparation in quantum metrology with collective spins. PRX Quantum 4, 020314 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kajtoch, D. & Witkowska, E. Quantum dynamics generated by the two-axis countertwisting Hamiltonian. Phys. Rev. A 92, 013623 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Z., Bohnet, J. G., Weiner, J. M. & Thompson, J. K. General formalism for evaluating the impact of phase noise on Bloch vector rotations. Phys. Rev. A 86, 032313 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hu, J. et al. Vacuum spin squeezing. Phys. Rev. A 96, 050301 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Borregaard, J., Davis, E., Bentsen, G. S., Schleier-Smith, M. H. & Sørensen, A. S. One-and two-axis squeezing of atomic ensembles in optical cavities. New J. Phys. 19, 093021 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cox, K. C., Greve, G. P., Weiner, J. M. & Thompson, J. K. Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett. 116, 093602 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Meier, E. J., An, F. A. & Gadway, B. Observation of the topological soliton state in the Su–Schrieffer–Heeger model. Nat. Commun. 7, 13986 (2016).

    Article 
    ADS 

    Google Scholar
     

  • An, F. A., Meier, E. J., Ang’ong’a, J. & Gadway, B. Correlated dynamics in a synthetic lattice of momentum states. Phys. Rev. Lett. 120, 040407 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Meier, E. J. et al. Observation of the topological Anderson insulator in disordered atomic wires. Science 362, 929–933 (2018).

    Article 
    ADS 

    Google Scholar
     

  • An, F. A. et al. Nonlinear dynamics in a synthetic momentum-state lattice. Phys. Rev. Lett. 127, 130401 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Léonard, J., Morales, A., Zupancic, P., Donner, T. & Esslinger, T. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358, 1415–1418 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Schuster, S., Wolf, P., Ostermann, S., Slama, S. & Zimmermann, C. Supersolid properties of a Bose-Einstein condensate in a ring resonator. Phys. Rev. Lett. 124, 143602 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553–601 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Landini, M. et al. Formation of a spin texture in a quantum gas coupled to a cavity. Phys. Rev. Lett. 120, 223602 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Rosa-Medina, R. et al. Observing dynamical currents in a non-Hermitian momentum lattice. Phys. Rev. Lett. 128, 143602 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Colella, E., Kosior, A., Mivehvar, F. & Ritsch, H. Open quantum system simulation of Faraday’s induction law via dynamical instabilities. Phys. Rev. Lett. 128, 070603 (2022).

    Article 
    ADS 

    Google Scholar