• Zhang, X. et al. Guiding of visible photons at the ångström thickness limit. Nat. Nanotechnol. 14, 844–850 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sung, J. et al. Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat. Photonics 16, 792–797 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ye, Y. et al. Monolayer excitonic laser. Nat. Photonics 9, 733–737 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Munkhbat, B. et al. Transition metal dichalcogenide metamaterials with atomic precision. Nat. Commun. 11, 4604 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lin, H. et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci. Appl. 9, 137 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & Imamoğlu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett. 120, 037401 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article 

    Google Scholar
     

  • Klembt, S. et al. Exciton–polariton topological insulator. Nature 562, 552–556 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton–polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Laitz, M. et al. Uncovering temperature-dependent exciton–polariton relaxation mechanisms in hybrid organic-inorganic perovskites. Nat. Commun. 14, 2426 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).

    Article 

    Google Scholar
     

  • Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Gibbs, H. M., Khitrova, G. & Koch, S. W. Exciton–polariton light–semiconductor coupling effects. Nat. Photonics 5, 273–273 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dirnberger, F. et al. Spin-correlated exciton–polaritons in a van der Waals magnet. Nat. Nanotechnol. 17, 1060–1064 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Li, Q. et al. Two-dimensional magnetic exciton polariton with strongly coupled atomic and photonic anisotropies. Phys. Rev. Lett. 133, 266901 (2024).

    Article 

    Google Scholar
     

  • Maggiolini, E. et al. Strongly enhanced light–matter coupling of monolayer WS2 from a bound state in the continuum. Nat. Mater. 22, 964–969 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Weber, T. et al. Intrinsic strong light–matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater. 22, 970–976 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jarc, G. et al. Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2. Nature 622, 487–492 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Latini, S. et al. The ferroelectric photo ground state of SrTiO3: cavity materials engineering. Proc. Natl Acad. Sci. USA 118, e2105618118 (2021).

    Article 

    Google Scholar
     

  • Viñas Boström, E., Sriram, A., Claassen, M. & Rubio, A. Controlling the magnetic state of the proximate quantum spin liquid α-RuCl3 with an optical cavity. npj Comput. Mater. 9, 202 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bagani, K. et al. Imaging strain-controlled magnetic reversal in thin CrSBr. Nano Lett. 24, 13068–13074 (2024).


    Google Scholar
     

  • Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 17, 256–261 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pawbake, A. et al. Magneto-optical sensing of the pressure driven magnetic ground states in bulk CrSBr. Nano Lett. 23, 9587–9593 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cham, T. M. J. et al. Anisotropic gigahertz antiferromagnetic resonances of the easy-axis van der Waals antiferromagnet CrSBr. Nano Lett. 22, 6716–6723 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ziebel, M. E. et al. CrSBr: an air-stable, two-dimensional magnetic semiconductor. Nano Lett. 24, 4319–4329 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Rizzo, D. J. et al. Visualizing atomically layered magnetism in CrSBr. Adv. Mater. 34, 2201000 (2022).

    Article 

    Google Scholar
     

  • Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano 17, 5316–5328 (2023).

    Article 

    Google Scholar
     

  • Nessi, L., Occhialini, C. A., Demir, A. K., Powalla, L. & Comin, R. Magnetic field tunable polaritons in the ultrastrong coupling regime in CrSBr. ACS Nano 18, 34235–34243 (2024).

    Article 

    Google Scholar
     

  • Datta, B., Adak, P.C., Yu, S. et al. Magnon-mediated exciton–exciton interaction in a van der Waals antiferromagnet. Nat. Mater. https://doi.org/10.1038/s41563-025-02183-0 (2025).

  • Shi, J. et al. Giant magneto-exciton coupling in 2D van der Waals CrSBr. Preprint at https://arxiv.org/abs/2409.18437v1 (2024).

  • Barcons Ruiz, D. et al. Engineering high quality graphene superlattices via ion milled ultra-thin etching masks. Nat. Commun. 13, 6926 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Demir, A. K. et al. Transferable optical enhancement nanostructures by gapless stencil lithography. Nano Lett. 24, 9882–9888 (2024).

    Article 

    Google Scholar
     

  • Liu, V. & Fan, S. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233–2244 (2012).

    Article 
    MathSciNet 
    ADS 
    MATH 

    Google Scholar
     

  • Wang, T. et al. Magnetically-dressed CrSBr exciton–polaritons in ultrastrong coupling regime. Nat. Commun. 14, 5966 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Suárez-Forero, D. G. et al. Chiral flat-band optical cavity with atomically thin mirrors. Sci. Adv. 10, eadr5904 (2024).

    Article 

    Google Scholar
     

  • Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Cerjan, A. et al. Observation of bound states in the continuum embedded in symmetry bandgaps. Sci. Adv. 7, eabk1117 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Vaidya, S., Benalcazar, W. A., Cerjan, A. & Rechtsman, M. C. Point-defect-localized bound states in the continuum in photonic crystals and structured fibers. Phys. Rev. Lett. 127, 023605 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, T. et al. Magnetism and optical anisotropy in van der waals antiferromagnetic insulator CrOCl. ACS Nano 13, 11353–11362 (2019).

    Article 

    Google Scholar
     

  • Gu, P. et al. Photoluminescent quantum interference in a van der Waals magnet preserved by symmetry breaking. ACS Nano 14, 1003–1010 (2020).

    Article 

    Google Scholar
     

  • Guo, Q. et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Guo, Q. et al. Colossal in-plane optical anisotropy in a two-dimensional van der Waals crystal. Nat. Photonics 18, 1170–1175 (2024).

    Article 

    Google Scholar
     

  • Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tabataba-Vakili, F. et al. Doping-control of excitons and magnetism in few-layer CrSBr. Nat. Commun. 15, 4735 (2024).

    Article 

    Google Scholar
     

  • Ergoktas, M. S. et al. Localized thermal emission from topological interfaces. Science 384, 1122–1126 (2024).

    Article 
    ADS 

    Google Scholar
     

  • He, L., Wu, J., Jin, J., Mele, E. J. & Zhen, B. Polaritonic Chern insulators in monolayer semiconductors. Phys. Rev. Lett. 130, 043801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Uemura, T. et al. Photonic topological phase transition induced by material phase transition. Sci. Adv. 10, eadp7779 (2024).

    Article 

    Google Scholar
     

  • Guddala, S. et al. Topological phonon–polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, M. et al. Experimental observation of topological Z2 exciton–polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Liu, W. et al. Generation of helical topological exciton–polaritons. Science 370, 600–604 (2020).

    Article 
    MathSciNet 

    Google Scholar