• Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sevilla, J. et al. Compute trends across three eras of machine learning. In International Joint Conference on Neural Networks (IJCNN), Padua, Italy 1–8 (IEEE, 2022); https://doi.org/10.1109/IJCNN55064.2022.9891914.

  • Amodei, D. & Hernandez, D. AI and compute. https://openai.com/index/ai-and-compute/ (2018).

  • Hernandez, D. & Brown, T. AI and efficiency. https://openai.com/index/ai-and-efficiency/ (2020).

  • GPT-4o Mini: Advancing Cost-Efficient Intelligence (OpenAI, accessed 5 August 2024); https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

  • Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for deep learning in NLP. Preprint at https://arxiv.org/abs/1906.02243 (2019).

  • Patterson, D. et al. Carbon emissions and large neural network training (2021).

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tan, M. et al. Photonic signal processor based on a Kerr microcomb for real-time video image processing. Commun. Eng. 2, 94 (2023).

    Article 

    Google Scholar
     

  • Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615–620 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yu, S. et al. A universal programmable Gaussian boson sampler for drug discovery. Nat. Comput. Sci. 3, 839–848 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134. https://doi.org/10.1109/SFCS.1994.365700 (1994).

  • Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing 212–219 (Association for Computing Machinery, 1996). https://doi.org/10.1145/237814.237866.

  • Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. & Smolin, J. Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992).

    Article 
    MATH 

    Google Scholar
     

  • Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Laudenbach, F. et al. Continuous-variable quantum key distribution with Gaussian modulation — the theory of practical implementations. Adv. Quantum Technol. 1, 1800011 (2018).

    Article 

    Google Scholar
     

  • Ralph, T. C. Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Tennie, F. & Palmer, T. N. Quantum computers for weather and climate prediction: the good, the bad, and the noisy. Bull. Am. Meteorol. Soc. 104, E488–E500 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Suhas, S. & Divya, S. Quantum-improved weather forecasting: integrating quantum machine learning for precise prediction and disaster mitigation. In 2023 International Conference on Quantum Technologies, Communications, Computing, Hardware and Embedded Systems Security (iQ-CCHESS) 1–7. https://doi.org/10.1109/iQ-CCHESS56596.2023.10391714 (2023).

  • Egger, D. J., García Gutiérrez, R., Mestre, J. C. & Woerner, S. Credit risk analysis using quantum computers. IEEE Trans. Comput. 70, 2136–2145 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Dri, E. et al. A more general quantum credit risk analysis framework. Entropy 25, 593 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Herman, D. et al. Quantum computing for finance. Nat. Rev. Phys. 5, 450–465 (2023).

    Article 

    Google Scholar
     

  • Woerner, S. & Egger, D. J. Quantum risk analysis. npj Quantum Inf. 5, 15 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dri, E., Giusto, E., Aita, A. & Montrucchio, B. Towards practical quantum credit risk analysis. J. Phys. Conf. Ser. 2416, 012002 (2022).

    Article 

    Google Scholar
     

  • Jørgensen, A. A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photon. 16, 798–802 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photon. 17, 781–790 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 13, 7862 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pang, X. et al. 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz). Opt. Express 19, 24944–24949 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Pang, X. et al. 25 Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks. IEEE Photon. J. 4, 691–698 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Li, F. et al. Optical I/Q modulation utilizing dual-drive MZM for fiber-wireless integration system at Ka-band. Opt. Lett. 44, 4235–4238 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Han, Y. & Li, G. Coherent optical communication using polarization multiple-input–multiple-output. Opt. Express 13, 7527–7534 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Hamerly, R. et al. Netcast: low-power edge computing with WDM-defined optical neural networks. J. Lightwave Technol. 42, 7795–7806 (2024).

    Article 

    Google Scholar
     

  • Brückerhoff-Plückelmann, F. et al. A large scale photonic matrix processor enabled by charge accumulation. Nanophotonics 12, 819–825 (2023).

    Article 

    Google Scholar
     

  • Zhang, J., Ma, B., Zhao, Y. & Zou, W. A large-scale photonic CNN based on spike coding and temporal integration. IEEE J. Sel. Top. Quantum Electron. 29, 1–10 (2023).


    Google Scholar
     

  • Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Roztocki, P. et al. Practical system for the generation of pulsed quantum frequency combs. Opt. Express 25, 18940–18949 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L. et al. On-chip parallel processing of quantum frequency comb. npj Quantum Inf. 9, 57 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, L. et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 4, 218–227 (2021).

    Article 

    Google Scholar
     

  • Abdollahramezani, S., Hemmatyar, O. & Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 9, 4075–4095 (2020).

    Article 

    Google Scholar
     

  • Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Porte, X. et al. A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser. J. Phys. Photon. 3, 024017 (2021).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun. 10, 3263 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Li, J., Hung, Y.-C., Kulce, O., Mengu, D. & Ozcan, A. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network. Light Sci. Appl. 11, 153 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Dorrah, A. H., Rubin, N. A., Zaidi, A., Tamagnone, M. & Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photon. 15, 287–296 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Heilmann, R., Gräfe, M., Nolte, S. & Szameit, A. Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli-X and rotation gates for polarisation qubits. Sci. Rep. 4, 4118 (2014).

    Article 

    Google Scholar
     

  • Wang, J. et al. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics 11, 645–680 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, S., Lou, Y. & Jing, J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 11, 3875 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ren, H. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948–955 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, Z. et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines. Nat. Commun. 11, 4099 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zahidy, M. et al. Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication. Nanophotonics 11, 821–827 (2022).

    Article 

    Google Scholar
     

  • Mehonic, A. et al. Roadmap to neuromorphic computing with emerging technologies. APL Mater. 12, 109201 (2024).

    Article 

    Google Scholar
     

  • Amitié/AEC-3 — Submarine Networks (Submarine Networks, accessed 2 December 2024); https://www.submarinenetworks.com/en/systems/trans-atlantic/amitie.

  • NVIDIA Co-Packaged Silicon Photonics Networking Switches (NVIDIA, accessed 7 April 2025); https://www.nvidia.com/en-us/networking/products/silicon-photonics/.

  • NVIDIA Announces Spectrum-X Photonics, Co-Packaged Optics Networking Switches to Scale AI Factories to Millions of GPUs (NVIDIA, accessed 7 April 2025); https://nvidianews.nvidia.com/news/nvidia-spectrum-x-co-packaged-optics-networking-switches-ai-factories.

  • Antonik, P., Marsal, N., Brunner, D. & Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell. 1, 530–537 (2019).

    Article 

    Google Scholar
     

  • Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).

    Article 

    Google Scholar
     

  • Brückerhoff-Plückelmann, F. et al. Probabilistic photonic computing with chaotic light. Nat. Commun. 15, 10445 (2024).

    Article 

    Google Scholar
     

  • Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, J. et al. Multimodal deep learning using on-chip diffractive optics with in situ training capability. Nat. Commun. 15, 6189 (2024).

    Article 

    Google Scholar
     

  • Sludds, A. et al. Delocalized photonic deep learning on the internet’s edge. Science 378, 270–276 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Xu, R. et al. Hybrid photonic integrated circuits for neuromorphic computing [Invited]. Opt. Mater. Express 13, 3553–3606 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Abu-Mostafa, Y. S. & Psaltis, D. Optical neural computers. Sci. Am. 256, 88–95 (1987).

    Article 

    Google Scholar
     

  • Kalinin, K. P. et al. Analog iterative machine (AIM): using light to solve quadratic optimization problems with mixed variables. 41 (2023).

  • Jaeger, H., Noheda, B. & van der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers. Nat. Commun. 14, 4911 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5, 756–760 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Skalli, A. et al. Annealing-inspired training of an optical neural network with ternary weights. Commun. Phys. 8, 1–10 (2025).

    Article 

    Google Scholar
     

  • Abreu, S. et al. A photonics perspective on computing with physical substrates. Rev. Phys. 12, 100093 (2024).

    Article 

    Google Scholar
     

  • Jouppi, N. P. et al. TPU v4: an optically reconfigurable supercomputer for machine learning with hardware support for embeddings. In Proc. 50th Annual International Symposium on Computer Architecture 1–14 (Association for Computing Machinery, 2023).

  • Akopyan, F. et al. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34, 1537–1557 (2015).

    Article 

    Google Scholar
     

  • Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. Nat. Electron. 6, 680–693 (2023).

    Article 

    Google Scholar
     

  • Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Meng, X. et al. High-integrated photonic tensor core utilizing high-dimensional lightwave and microwave multidomain multiplexing. Light Sci. Appl. 14, 27 (2025).

    Article 

    Google Scholar
     

  • Fu, T. et al. Optical neural networks: progress and challenges. Light Sci. Appl. 13, 263 (2024).

    Article 

    Google Scholar
     

  • El Srouji, L. et al. Photonic and optoelectronic neuromorphic computing. APL Photon. 7, 051101 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lima, T. F., de Shastri, B. J., Tait, A. N., Nahmias, M. A. & Prucnal, P. R. Progress in neuromorphic photonics. Nanophotonics 6, 577–599 (2017).

    Article 

    Google Scholar
     

  • Meng, X. et al. Compact optical convolution processing unit based on multimode interference. Nat. Commun. 14, 3000 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lima, T. Fde et al. Primer on silicon neuromorphic photonic processors: architecture and compiler. Nanophotonics 9, 4055–4073 (2020).

    Article 

    Google Scholar
     

  • Karunaratne, G. et al. In-memory hyperdimensional computing. Nat. Electron. 3, 327–337 (2020).

    Article 

    Google Scholar
     

  • Karunaratne, G. et al. Robust high-dimensional memory-augmented neural networks. Nat. Commun. 12, 2468 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hersche, M., Zeqiri, M., Benini, L., Sebastian, A. & Rahimi, A. A neuro-vector-symbolic architecture for solving Raven’s progressive matrices. Nat. Mach. Intell. 5, 363–375 (2023).

    Article 

    Google Scholar
     

  • De Marinis, L., Cococcioni, M., Castoldi, P. & Andriolli, N. Photonic neural networks: a survey. IEEE Access 7, 175827–175841 (2019).

    Article 

    Google Scholar
     

  • Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wiebe, N., Braun, D. & Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014).

    Article 

    Google Scholar
     

  • Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

    Article 

    Google Scholar
     

  • Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Cai, X.-D. et al. Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Aghaee Rad, H. et al. Scaling and networking a modular photonic quantum computer. Nature 638, 912–919 (2025).

    Article 

    Google Scholar
     

  • Alexander, K. et al. A manufacturable platform for photonic quantum computing. Nature https://doi.org/10.1038/s41586-025-08820-7 (2025).

  • Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article 

    Google Scholar
     

  • Schuld, M. & Killoran, N. Is quantum advantage the right goal for quantum machine learning? PRX Quantum 3, 030101 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bowles, J., Ahmed, S. & Schuld, M. Better than classical? The subtle art of benchmarking quantum machine learning models. Preprint at https://arxiv.org/abs/2403.07059 (2024).

  • Schütte, N.-E., Götting, N., Müntinga, H., List, M. & Gies, C. Expressive limits of quantum reservoir computing. Preprint at https://arxiv.org/abs/2501.15528 (2025).

  • Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).

    Article 

    Google Scholar
     

  • Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. https://doi.org/10.1126/sciadv.abc8268 (2020).

  • Le Jeannic, H. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).

    Article 

    Google Scholar
     

  • Nielsen, K. H. et al. Programmable nonlinear quantum photonic circuits. Preprint at https://arxiv.org/abs/2405.17941v1 (2024).

  • Liu, S. et al. Violation of Bell inequality by photon scattering on a two-level emitter. Nat. Phys. https://doi.org/10.1038/s41567-024-02543-8 (2024).

  • De Santis, L. et al. A solid-state single-photon filter. Nat. Nanotechnol. 12, 663–667 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Fujii, K. & Nakajima, K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 8, 024030 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Spagnolo, M. et al. Experimental photonic quantum memristor. Nat. Photon. 16, 318–323 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Menicucci, N. C. Temporal-mode continuous-variable cluster states using linear optics. Phys. Rev. A 83, 062314 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Lu, J., Li, M., Zou, C.-L., Al Sayem, A. & Tang, H. X. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7, 1654–1659 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, M. & Fang, K. InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio. Optica 9, 258–263 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yanagimoto, R. et al. Engineering a Kerr-based deterministic cubic phase gate via Gaussian operations. Phys. Rev. Lett. 124, 240503 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Yanagimoto, R. et al. Onset of non-Gaussian quantum physics in pulsed squeezing with mesoscopic fields. Optica 9, 379–390 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yanagimoto, R., Nehra, R., Ng, E., Marandi, A. & Mabuchi, H. Engineering cubic quantum nondemolition Hamiltonian with mesoscopic optical parametric interactions. Preprint at https://arxiv.org/abs/2305.03260 (2023).

  • Yanagimoto, R. et al. Quantum nondemolition measurements with optical parametric amplifiers for ultrafast universal quantum information processing. PRX Quantum 4, 010333 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yanagimoto, R. et al. Mesoscopic ultrafast nonlinear optics — the emergence of multimode quantum non-Gaussian physics. Optica 11, 896–918 (2024).

    Article 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Carosini, L. et al. Programmable multiphoton quantum interference in a single spatial mode. Sci. Adv. 10, eadj0993 (2024).

    Article 

    Google Scholar
     

  • Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Vigliar, C. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).

    Article 

    Google Scholar
     

  • Hazan, A. & Ezra Tsur, E. Neuromorphic analog implementation of neural engineering framework-inspired spiking neuron for high-dimensional representation. Front. Neurosci. 15, 627221 (2021).

    Article 

    Google Scholar
     

  • Semenova, N., Larger, L. & Brunner, D. Understanding and mitigating noise in trained deep neural networks. Neural Netw. 146, 151–160 (2022).

    Article 

    Google Scholar
     

  • Tang, G. et al. SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges. Front. Neurosci. 17, 1187252 (2023).

    Article 

    Google Scholar
     

  • Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6, 041303 (2019).

    Article 
    ADS 

    Google Scholar