• Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).


    Google Scholar
     

  • Luo, Y. Terrestrial carbon–cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).


    Google Scholar
     

  • Soong, J. L. et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 7, eabd1343 (2021).

    CAS 

    Google Scholar
     

  • Jones, C. D., Cox, P. & Huntingford, C. Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus B 55, 642–648 (2003).


    Google Scholar
     

  • Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).

    CAS 

    Google Scholar
     

  • Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    CAS 

    Google Scholar
     

  • Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).


    Google Scholar
     

  • Xu, X. et al. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob. Chang. Biol. 21, 3846–3853 (2015).


    Google Scholar
     

  • Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

    CAS 

    Google Scholar
     

  • Lombardozzi, D. L., Bonan, G. B., Smith, N. G., Dukes, J. S. & Fisher, R. A. Temperature acclimation of photosynthesis and respiration: a key uncertainty in the carbon cycle–climate feedback. Geophys. Res. Lett. 42, 8624–8631 (2015).

    CAS 

    Google Scholar
     

  • Reich, P. B. et al. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531, 633–636 (2016).

    CAS 

    Google Scholar
     

  • Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Chang. Biol. 19, 45–63 (2013).


    Google Scholar
     

  • Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun. 8, 1602 (2017).


    Google Scholar
     

  • Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).

    CAS 

    Google Scholar
     

  • Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).


    Google Scholar
     

  • Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).


    Google Scholar
     

  • Tian, W. et al. Thermal adaptation occurs in the respiration and growth of widely distributed bacteria. Glob. Chang. Biol. 28, 2820–2829 (2022).

    CAS 

    Google Scholar
     

  • Melillo, J. M. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).

    CAS 

    Google Scholar
     

  • Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).


    Google Scholar
     

  • Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).

    CAS 

    Google Scholar
     

  • Quan, Q. et al. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 5, eaav1131 (2019).

    CAS 

    Google Scholar
     

  • Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    CAS 

    Google Scholar
     

  • Liang, C. & Lehmann, J. Multifactorial effects matter: moving thermal adaptation into a real‐world setting. Glob. Chang. Biol. 29, 566–568 (2022).


    Google Scholar
     

  • Zhang, Y. et al. Temperature fluctuation promotes the thermal adaptation of soil microbial respiration. Nat. Ecol. Evol. 7, 205–213 (2023).


    Google Scholar
     

  • Li, J. et al. Low soil moisture suppresses the thermal compensatory response of microbial respiration. Glob. Chang. Biol. 29, 874–889 (2023).

    CAS 

    Google Scholar
     

  • Sun, H. et al. Nitrogen enrichment enhances thermal acclimation of soil microbial respiration. Biogeochemistry 162, 343–357 (2023).

    CAS 

    Google Scholar
     

  • Chen, J. et al. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agric. For. Meteorol. 220, 21–29 (2016).


    Google Scholar
     

  • Chi, Y. et al. Temperature sensitivity in individual components of ecosystem respiration increases along the vertical gradient of leaf–stem–soil in three subtropical forests. Forests 11, 140 (2020).


    Google Scholar
     

  • Felton, A. J. & Smith, M. D. Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Phil. Trans. R. Soc. B 372, 20160142 (2017).


    Google Scholar
     

  • Luo, Y., Wan, S., Hui, D. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).

    CAS 

    Google Scholar
     

  • Smith, N. G., Malyshev, S. L., Shevliakova, E., Kattge, J. & Dukes, J. S. Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nat. Clim. Change 6, 407–411 (2016).


    Google Scholar
     

  • Pickett, S. T. A. in Long-Term Studies in Ecology (ed. Likens, G. E.) 110–135 (Springer, 1989).

  • De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).


    Google Scholar
     

  • Vanderwel, M. C. et al. Global convergence in leaf respiration from estimates of thermal acclimation across time and space. N. Phytol. 207, 1026–1037 (2015).


    Google Scholar
     

  • Tjoelker, M. G., Oleksyn, J., Lorenc‐Plucinska, G. & Reich, P. B. Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana. N. Phytol. 181, 218–229 (2009).

    CAS 

    Google Scholar
     

  • Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Chang. Biol. 16, 1576–1588 (2010).


    Google Scholar
     

  • Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

    CAS 

    Google Scholar
     

  • Huang, M. T. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).


    Google Scholar
     

  • Tjoelker, M. G., Oleksyn, J. & Reich, P. B. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob. Chang. Biol. 7, 223–230 (2001).


    Google Scholar
     

  • Heskel, M. A. et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc. Natl Acad. Sci. USA 113, 3832–3837 (2016).

    CAS 

    Google Scholar
     

  • Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol. Biochem. 141, 107675 (2020).

    CAS 

    Google Scholar
     

  • Peng, S., Piao, S., Wang, T., Sun, J. & Shen, Z. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem. 41, 1008–1014 (2009).

    CAS 

    Google Scholar
     

  • Chen, H. & Tian, H. Q. Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? J. Integr. Plant Biol. 47, 1288–1302 (2005).


    Google Scholar
     

  • Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    CAS 

    Google Scholar
     

  • Wythers, K. R., Reich, P. B. & Bradford, J. B. Incorporating temperature-sensitive Q10 and foliar respiration acclimation algorithms modifies modeled ecosystem responses to global change. J. Geophys. Res. Biogeosci. 118, 77–90 (2013).


    Google Scholar
     

  • He, Y. et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability. Glob. Chang. Biol. 29, 1178–1187 (2023).

    CAS 

    Google Scholar
     

  • Qu, L. et al. Stronger compensatory thermal adaptation of soil microbial respiration with higher substrate availability. ISME J. 18, wrae025 (2024).


    Google Scholar
     

  • Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).

    CAS 

    Google Scholar
     

  • Malcolm, G. M., López-Gutiérrez, J. C., Koide, R. T. & Eissenstat, D. M. Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi. Glob. Chang. Biol. 14, 1169–1180 (2008).


    Google Scholar
     

  • Ye, J. S., Bradford, M. A., Dacal, M., Maestre, F. T. & García-Palacios, P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob. Chang. Biol. 25, 3354–3364 (2019).


    Google Scholar
     

  • Atkin, O. K. et al. Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model. Glob. Chang. Biol. 14, 2709–2726 (2008).


    Google Scholar
     

  • Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).


    Google Scholar
     

  • Li, J., Bååth, E., Pei, J., Fang, C. & Nie, M. Temperature adaptation of soil microbial respiration in alpine, boreal and tropical soils: an application of the square root (Ratkowsky) model. Glob. Chang. Biol. 27, 1281–1292 (2021).

    CAS 

    Google Scholar
     

  • Alster, C. J. et al. Quantifying thermal adaptation of soil microbial respiration. Nat. Commun. 14, 5459 (2023).

    CAS 

    Google Scholar
     

  • Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7, eabc7358 (2021).


    Google Scholar
     

  • Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Chang. Biol. 26, 1873–1885 (2020).


    Google Scholar
     

  • Gui, Y. et al. The decline in tropical land carbon sink drove high atmospheric CO2 growth rate in 2023. Natl Sci. Rev. 11, nwae365 (2024).


    Google Scholar
     

  • Liu, X. et al. Long-term warming increased carbon sequestration capacity in a humid subtropical forest. Glob. Chang. Biol. 30, e17072 (2024).


    Google Scholar
     

  • Lee, J. Y. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 553–672 (IPCC, Cambridge Univ. Press, 2021).

  • Wolkovich, E. M., Cook, B. I., McLauchlan, K. K. & Davies, T. J. Temporal ecology in the Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).

    CAS 

    Google Scholar
     

  • Pastorello, G. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).


    Google Scholar
     

  • Liu, Y., Wu, C., Wang, X. & Zhang, Y. Contrasting responses of peak vegetation growth to asymmetric warming: evidences from FLUXNET and satellite observations. Glob. Chang. Biol. 29, 2363–2379 (2023).

    CAS 

    Google Scholar
     

  • Hamdi, S. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 58, 115–126 (2013).

    CAS 

    Google Scholar
     

  • Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 9, 409 (2022).


    Google Scholar
     

  • Allen, R. G. et al. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements FAO Irrigation and Drainage Paper No. 56 (Food and Agriculture Organization, 1998).

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).


    Google Scholar
     

  • Chen, W. et al. Evidence for widespread thermal optimality of ecosystem respiration. Nat. Ecol. Evol. 7, 1379–1387 (2023).


    Google Scholar
     

  • Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).

    CAS 

    Google Scholar
     

  • Niu, S. et al. Temperature responses of ecosystem respiration. Nat. Rev. Earth Environ. 5, 559–571 (2024).


    Google Scholar
     

  • Bååth, E. Temperature sensitivity of soil microbial activity modeled by the square root equation as a unifying model to differentiate between direct temperature effects and microbial community adaptation. Glob. Chang. Biol. 24, 2850–2861 (2018).


    Google Scholar
     

  • Alster, C. J., Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Chang. Biol. 26, 3221–3229 (2020).


    Google Scholar
     

  • Robinson, J. M. et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry 133, 101–112 (2017).

    CAS 

    Google Scholar
     

  • Hobbs, J. K. et al. Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem. Biol. 8, 2388–2393 (2013).

    CAS 

    Google Scholar
     

  • Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Ann. Rev. Mar. Sci. 5, 349–370 (2013).


    Google Scholar
     

  • Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Change 12, 97–102 (2021).


    Google Scholar
     

  • Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).


    Google Scholar
     

  • Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS 

    Google Scholar
     

  • Wang, M. et al. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nat. Commun. 13, 5514 (2022).

    CAS 

    Google Scholar
     

  • Chen, Z. et al. Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: a global synthesis. Agric. For. Meteorol. 203, 180–190 (2015).


    Google Scholar
     

  • Wang, B. et al. Dryness limits vegetation pace to cope with temperature change in warm regions. Glob. Chang. Biol. 29, 4750–4757 (2023).

    CAS 

    Google Scholar
     

  • Tjoelker, M. G., Oleksyn, J., Reich, P. B. & Żytkowiak, R. Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in Pinus banksiana across wide-ranging sites and populations. Glob. Chang. Biol. 14, 782–797 (2008).


    Google Scholar
     

  • Li, X. et al. Increased crossing of thermal stress thresholds of vegetation under global warming. Glob. Chang. Biol. 30, e17406 (2024).

    CAS 

    Google Scholar
     

  • R Core Team R: a language and environment for statistical computing. R version 4.1.0 (2021).

  • Xu, X. et al. Thermal adaptation of respiration in terrestrial ecosystems alleviates carbon loss. figshare https://doi.org/10.6084/m9.figshare.28246940 (2025).