• Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

    ADS 

    Google Scholar
     

  • Law, K. L. & Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7, 104–116 (2022).

    ADS 

    Google Scholar
     

  • Chen, Y., Awasthi, A. K., Wei, F., Tan, Q. & Li, J. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 752, 141772 (2021).

    PubMed 

    Google Scholar
     

  • OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. (Organisation for Economic Co-operation and Development, Paris, 2022).

  • Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sangroniz, A. et al. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 10, 3559 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J., Wang, L. & Kannan, K. Microplastics in house dust from 12 countries and associated human exposure. Environ. Int. 134, 105314 (2020).

    PubMed 

    Google Scholar
     

  • Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199 (2022).

    PubMed 

    Google Scholar
     

  • Amato-Lourenço, L. F. et al. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 416, 126124 (2021).

    PubMed 

    Google Scholar
     

  • Blackburn, K. & Green, D. The potential effects of microplastics on human health: What is known and what is unknown. Ambio 51, 518–530 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Van der Laan, L. J. W., Bosker, T. & Peijnenburg, W. J. G. M. Deciphering potential implications of dietary microplastics for human health. Nat. Rev. Gastroenterol. Hepatol. 20, 340–341 (2023).

    PubMed 

    Google Scholar
     

  • Ghosh, S. et al. Microplastics as an emerging threat to the global environment and human health. Sustainability 15, 10821 (2023).


    Google Scholar
     

  • Fleury, J.-B. & Baulin, V. A. Microplastics destabilize lipid membranes by mechanical stretching. Proc. Natl. Acad. Sci. 118, e2104610118 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, H. V. et al. The fundamental links between climate change and marine plastic pollution. Sci. Total Environ. 806, 150392 (2022).

    PubMed 

    Google Scholar
     

  • Andreoni, V., Saveyn, H. G. M. & Eder, P. Polyethylene recycling: waste policy scenario analysis for the EU-27. J. Environ. Manag. 158, 103–110 (2015).


    Google Scholar
     

  • Jia, L., Evans, S. & Linden, S. van der. Motivating actions to mitigate plastic pollution. Nat. Commun. 10, 4582 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herberz, T., Barlow, C. Y. & Finkbeiner, M. Sustainability assessment of a single-use plastics ban. Sustainability 12, 3746 (2020).


    Google Scholar
     

  • Single Use Packaging Market – Size, Share & Industry Report. https://www.mordorintelligence.com/industry-reports/single-use-plastic-packaging-market (2023).

  • Gross, R. A. & Kalra, B. Biodegradable polymers for the environment. Science 297, 803–807 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guicherd, M. et al. An engineered enzyme embedded into PLA to make self-biodegradable plastic. Nature 631, 884–890 (2024).

    PubMed 

    Google Scholar
     

  • Surendren, A., Mohanty, A. K., Liu, Q. & Misra, M. A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green. Chem. 24, 8606–8636 (2022).


    Google Scholar
     

  • Grushkin, D. Breaking the mold. Nat. Biotechnol. 29, 16–18 (2011).

    PubMed 

    Google Scholar
     

  • Bergeson, A. R., Silvera, A. J. & Alper, H. S. Bottlenecks in biobased approaches to plastic degradation. Nat. Commun. 15, 4715 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slezak, R., Krzystek, L., Puchalski, M., Krucińska, I. & Sitarski, A. Degradation of bio-based film plastics in soil under natural conditions. Sci. Total Environ. 866, 161401 (2023).

    PubMed 

    Google Scholar
     

  • Royer, S.-J., Greco, F., Kogler, M. & Deheyn, D. D. Not so biodegradable: polylactic acid and cellulose/plastic blend textiles lack fast biodegradation in marine waters. PLOS ONE 18, e0284681 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narancic, T. et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 52, 10441–10452 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Luzier, W. D. Materials derived from biomass/biodegradable materials. Proc. Natl. Acad. Sci. 89, 839–842 (1992).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akdoğan, E. et al. Accelerating the environmental biodegradation of poly-3-hydroxybutyrate (PHB) via plasma surface treatment. Bioresour. Technol. Rep. 25, 101719 (2024).


    Google Scholar
     

  • Wang, G., Huang, D., Ji, J., Völker, C. & Wurm, F. R. Seawater-degradable polymers—fighting the marine plastic pollution. Adv. Sci. 8, 2001121 (2020).


    Google Scholar
     

  • Gasparyan, K. G., Tyubaeva, P. M., Varyan, I. A., Vetcher, A. A. & Popov, A. A. Assessing the biodegradability of PHB-based materials with different surface areas: a comparative study on soil exposure of films and electrospun materials. Polymers 15, 2042 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kora, A. J. Leaves as dining plates, food wraps and food packing material: importance of renewable resources in Indian culture. Bull. Natl. Res. Cent. 43, 205 (2019).


    Google Scholar
     

  • Serbin, S. P. & Townsend, P. A. Scaling Functional Traits from Leaves to Canopies. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 43–82 (Springer International Publishing, Cham, 2020).

  • Jeong, J.-H. et al. Anti-Tumoral Effect of the Mitochondrial Target Domain of Noxa Delivered by an Engineered Salmonella Typhimurium. PLoS ONE 9, e80050 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parikh, B. H. et al. A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway. Nat. Commun. 13, 2796 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weems, A. C., Arno, M. C., Yu, W., Huckstepp, R. T. R. & Dove, A. P. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nat. Commun. 12, 3771 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. & Song, J. High performance shape memory polymer networks based on rigid nanoparticle cores. Proc. Natl. Acad. Sci. 107, 7652–7657 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ham, H. O. et al. In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase A. Nat. Commun. 7, 11140 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat. Commun. 11, 1107 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, Y. S. et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyer, J. C., Taylor, L. W. & Nylander-French, L. A. Viability of cultured human skin cells treated with 1,6-hexamethylene diisocyanate monomer and its oligomer isocyanurate in different culture media. Sci. Rep. 11, 23804 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inventory of Effective Food Contact Substance (FCS) Notifications. https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FCN&id=2263&sort=FCN_No&order=DESC&startrow=1&type=basic&search=polylactic%20acid (2022).

  • Inventory of Effective Food Contact Substance (FCS) Notifications. https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FCN&id=1887&sort=FCN_No&order=DESC&startrow=1&type=basic&search=cellulose%20 (2018).

  • Inventory of Effective Food Contact Substance (FCS) Notifications. https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FCN&id=1901&sort=FCN_No&order=DESC&startrow=1&type=basic&search=hexamethylene%20diisocyanate (2018).

  • Liu, Y. et al. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci. Technol. 112, 532–546 (2021).


    Google Scholar
     

  • Carosio, F. et al. Efficient gas and water vapor barrier properties of thin poly(lactic acid) packaging films: functionalization with moisture resistant nafion and clay multilayers. Chem. Mater. 26, 5459–5466 (2014).


    Google Scholar
     

  • Anggarini, U. et al. A highly water-selective carboxymethylated cellulose nanofiber (CNF-CMC) membrane for the separation of binary (water/N2) and ternary (water/alcohols/N2) systems in vapor-permeation. J. Membr. Sci. 691, 122229 (2024).


    Google Scholar
     

  • Ustin, S. L. & Jacquemoud, S. How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 349–384 (Springer International Publishing, Cham, 2020).

  • Wang, S., Ren, L., Liu, Y., Han, Z. & Yang, Y. Mechanical characteristics of typical plant leaves. J. Bionic Eng. 7, 294–300 (2010).


    Google Scholar
     

  • Ruzi, M., Celik, N. & Onses, M. S. Superhydrophobic coatings for food packaging applications: a review. Food Packag. Shelf Life 32, 100823 (2022).


    Google Scholar
     

  • Rio, E. & Boulogne, F. Withdrawing a solid from a bath: How much liquid is coated?. Adv. Colloid Interface Sci. 247, 100–114 (2017).

    PubMed 

    Google Scholar
     

  • Puetz, J. & Aegerter, M. A. Dip Coating Technique. in Sol-Gel Technologies for Glass Producers and Users (eds. Aegerter, M. A. & Mennig, M.) 37–48 (Springer US, Boston, MA, 2004)..

  • Rbihi, S., Aboulouard, A., Laallam, L. & Jouaiti, A. Contact angle measurements of cellulose based thin film composites: wettability, surface free energy and surface hardness. Surf. Interfaces 21, 100708 (2020).


    Google Scholar
     

  • Strutynski, C. et al. 4D Optical fibers based on shape-memory polymers. Nat. Commun. 14, 6561 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38, 8012–8021 (2005).

    ADS 

    Google Scholar
     

  • Echeverría, C., Limón, I., Muñoz-Bonilla, A., Fernández-García, M. & López, D. Development of highly crystalline polylactic acid with β-crystalline phase from the induced alignment of electrospun fibers. Polymers 13, 2860 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jokar, M., Abdul Rahman, R., Ibrahim, N. A., Abdullah, L. C. & Tan, C. P. Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food Bioprocess Technol. 5, 719–728 (2012).


    Google Scholar
     

  • Yang, H., Jacucci, G., Schertel, L. & Vignolini, S. Cellulose-based scattering enhancers for light management applications. ACS Nano 16, 7373–7379 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy, I. V. A. K. et al. Ultrabroadband terahertz-band communications with self-healing Bessel beams. Commun. Eng. 2, 1–9 (2023).


    Google Scholar
     

  • Hutchinson, M. H., Dorgan, J. R., Knauss, D. M. & Hait, S. B. Optical properties of polylactides. J. Polym. Environ. 14, 119–124 (2006).


    Google Scholar
     

  • Ward, C. P. & Reddy, C. M. We need better data about the environmental persistence of plastic goods. Proc. Natl. Acad. Sci. 117, 14618–14621 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wurzbacher, C. E. et al. Planctoellipticum variicoloris gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from wastewater of the aeration lagoon of a sugar processing plant in Northern Germany. Sci. Rep. 14, 5741 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boedeker, C. et al. Determining the bacterial cell biology of Planctomycetes. Nat. Commun. 8, 14853 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Review on Nonconventional Fibrillation Methods of Producing Cellulose Nanofibrils and Their Applications. Biomacromolecules 22, 4037–4059 (2021).

    PubMed 

    Google Scholar
     

  • Delgado-Aguilar, M. et al. Approaching a Low-Cost Production of Cellulose Nanofibers for Papermaking Applications. BioResources 10, 5345–5355 (2015).


    Google Scholar
     

  • Wellenreuther, C., Wolf, A. & Zander, N. Cost competitiveness of sustainable bioplastic feedstocks – A Monte Carlo analysis for polylactic acid. Clean. Eng. Technol. 6, 100411 (2022).


    Google Scholar
     

  • Wimberger, L., Ng, G. & Boyer, C. Light-driven polymer recycling to monomers and small molecules. Nat. Commun. 15, 2510 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US polyethylene price evolution and what to expect | McKinsey. https://www.mckinsey.com/industries/chemicals/our-insights/us-polyethylene-price-evolution-and-what-to-expect.

  • Liu, W., Wu, X., Chen, X., Liu, S. & Zhang, C. Flexibly Controlling the Polycrystallinity and Improving the Foaming Behavior of Polylactic Acid via Three Strategies. ACS Omega 7, 6248–6260 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segal, L., Creely, J. J., Martin, A. E. & Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959).


    Google Scholar