• Bernardi, F., Olivucci, M. & Robb, M. A. Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev. 25, 321 (1996).

    CAS 

    Google Scholar
     

  • Levine, B. G. & Martínez, T. J. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 58, 613–634 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Crespo-Hernández, C. E., Cohen, B., Hare, P. M. & Kohler, B. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 104, 1977–2020 (2004).

    PubMed 

    Google Scholar
     

  • Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Yarkony, D. R. Diabolical conical intersections. Rev. Mod. Phys. 68, 985–1013 (1996).

    CAS 

    Google Scholar
     

  • Worth, G. A. & Cederbaum, L. S. Beyond born-oppenheimer: molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55, 127–158 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Schuurman, M. S. & Stolow, A. Dynamics at conical intersections. Annu. Rev. Phys. Chem. 69, 427–450 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Zinchenko, K. S. et al. Sub-7-femtosecond conical-intersection dynamics probed at the carbon K-edge. Science 371, 489–494 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Wörner, H. J. et al. Conical intersection dynamics in no2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

    PubMed 

    Google Scholar
     

  • Minitti, M. P. et al. Imaging molecular motion: Femtosecond x-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Imaging CF3 I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361, 64–67 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Hosseinizadeh, A. et al. Few-fs resolution of a photoactive protein traversing a conical intersection. Nature 599, 697–701 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoffmann, R. & Woodward, R. B. Conservation of orbital symmetry. Acc. Chem. Res. 1, 17–22 (1968).

    CAS 

    Google Scholar
     

  • Deb, S. & Weber, P. M. The ultrafast pathway of photon-induced electrocyclic ring-opening reactions: the case of 1,3-cyclohexadiene. Annu. Rev. Phys. Chem. 62, 19–39 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Havinga, E. & Schlatmann, J. Remarks on the specificities of the photochemical and thermal transformations in the vitamin d field. Tetrahedron 16, 146–152 (1961).


    Google Scholar
     

  • Chopade, P. & Louie, J. [2+2+2] cycloaddition reactions catalyzed by transition metal complexes. Adv. Synth. Catal. 348, 2307–2327 (2006).

    CAS 

    Google Scholar
     

  • Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Garavelli, M. et al. Reaction path of a sub-200 fs photochemical electrocyclic reaction. J. Phys. Chem. A 105, 4458–4469 (2001).

    CAS 

    Google Scholar
     

  • Kosma, K., Trushin, S. A., Fuß, W. & Schmid, W. E. Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path. Phys. Chem. Chem. Phys. 11, 172–181 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Kuthirummal, N., Rudakov, F. M., Evans, C. L. & Weber, P. M. Spectroscopy and femtosecond dynamics of the ring opening reaction of 1,3-cyclohexadiene. J. Chem. Phys. 125, 133307 (2006).

    PubMed 

    Google Scholar
     

  • Travnikova, O. et al. Photochemical ring-opening reaction of 1,3-cyclohexadiene: identifying the true reactive state. J. Am. Chem. Soc. 144, 21878–21886 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruan, C.-Y. et al. Ultrafast diffraction and structural dynamics: The nature of complex molecules far from equilibrium. Proc. Natl Acad. Sci. 98, 7117–7122 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, T. J. A. et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11, 504–509 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Arruda, B. C. & Sension, R. J. Ultrafast polyene dynamics: the ring opening of 1,3-cyclohexadiene derivatives. Phys. Chem. Chem. Phys. 16, 4439 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Pemberton, C. C., Zhang, Y., Saita, K., Kirrander, A. & Weber, P. M. From the (1b) spectroscopic state to the photochemical product of the ultrafast ring-opening of 1,3-cyclohexadiene: a spectral observation of the complete reaction path. J. Phys. Chem. A 119, 8832–8845 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Attar, A. R. et al. Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Karashima, S. et al. Ultrafast ring-opening reaction of 1,3-cyclohexadiene: identification of nonadiabatic pathway via doubly excited state. J. Am. Chem. Soc. 143, 8034–8045 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Centurion, M., Wolf, T. J. & Yang, J. Ultrafast imaging of molecules with electron diffraction. Annu. Rev. Phys. Chem. 73, 21–42 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Ischenko, A. A., Weber, P. M. & Miller, R. J. D. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066–11124 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y., Oang, K. Y., Kim, D. & Ihee, H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. Struct. Dyn. 11, 031301 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruddock, J. M. et al. A deep UV trigger for ground-state ring-opening dynamics of 1,3-cyclohexadiene. Sci. Adv. 5, eaax6625 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L. et al. Ultrafast x-ray and electron scattering of free molecules: A comparative evaluation. Struct. Dyn. 7, 034102 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Qi, F. et al. Breaking 50 femtosecond resolution barrier in mev ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124, 134803 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).


    Google Scholar
     

  • Ma, Z. et al. Ultrafast isolated molecule imaging without crystallization. Proc. Natl Acad. Sci. USA 119, e2122793119 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932).

    CAS 

    Google Scholar
     

  • Crespo-Otero, R. & Barbatti, M. Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics. Chem. Rev. 118, 7026–7068 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Moerner, W. E. W. E. Nobel lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy. Rev. Mod. Phys. 87, 1183–1212 (2015).

    CAS 

    Google Scholar
     

  • Sigal, Y. M., Zhou, R. & Zhuang, X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880–887 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Natan, A. Real-space inversion and super-resolution of ultrafast scattering. Phys. Rev. A 107, 023105 (2023).

    CAS 

    Google Scholar
     

  • Prince, E. et al. (eds.) International Tables for Crystallography: Mathematical, physical and chemical tables, vol. C of International Tables for Crystallography (International Union of Crystallography, Chester, England, 2006), 1 edn.

  • Yang, J. et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science 368, 885–889 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Champenois, E. G. et al. Femtosecond electronic and hydrogen structural dynamics in ammonia imaged with ultrafast electron diffraction. Phys. Rev. Lett. 131, 143001 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T. et al. Imaging the photochemical dynamics of cyclobutanone with MeV ultrafast electron diffraction. J. Chem. Phys. 162, 184201 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Green, A. E. et al. Imaging the photochemistry of cyclobutanone using ultrafast electron diffraction: Experimental results. J. Chem. Phys. 162, 184303 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Adachi, S., Sato, M. & Suzuki, T. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 6, 343–346 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial Molecular Machines. Chem. Rev. 115, 10081–10206 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouxel, J. R., Keefer, D. & Mukamel, S. Signatures of electronic and nuclear coherences in ultrafast molecular x-ray and electron diffraction. Struct. Dyn. 8, 014101 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouxel, J. R. et al. Coupled electronic and nuclear motions during azobenzene photoisomerization monitored by ultrafast electron diffraction. J. Chem. Theory Comput. 18, 605–613 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Ihee, H., Goodson, B. M., Srinivasan, R., Lobastov, V. A. & Zewail, A. H. Ultrafast electron diffraction and structural dynamics: transient intermediates in the elimination reaction of c2 f4 i2. J. Phys. Chem. A 106, 4087–4103 (2002).

    CAS 

    Google Scholar
     

  • Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B: Stat. Methodol. 58, 267–288 (1996).

    MathSciNet 

    Google Scholar
     

  • Hansen, P. C. & O’Leary, D. P. The use of the l-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993).

    MathSciNet 

    Google Scholar
     

  • Candes, E., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

    MathSciNet 

    Google Scholar
     

  • Frisch, M. J. et al. GaussianËœ16 Revision C.01 Gaussian Inc. Wallingford CT (2016).

  • Shiozaki, T., Györffy, W., Celani, P. & Werner, H.-J. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients. J. Chem. Phys. 135, 081106 (2011).

    PubMed 

    Google Scholar
     

  • Roos, B. O. & Andersson, K. Multiconfigurational perturbation theory with level shift -” the Cr2 potential revisited. Chem. Phys. Lett. 245, 215–223 (1995).

    CAS 

    Google Scholar
     

  • Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. W. & Shiozaki, T. Analytical derivative coupling for multistate CASPT2 theory. J. Chem. Theory Comput. 13, 2561–2570 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Crespo-Otero, R. & Barbatti, M. Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran. Theor. Chem. Acc. 131, 1237 (2012).


    Google Scholar
     

  • Hait, D. et al. Prediction of photodynamics of 200 nm excited cyclobutanone with linear response electronic structure and ab initio multiple spawning. J. Chem. Phys. 160, 244101 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Granucci, G. & Persico, M. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 126, 134114 (2007).

    PubMed 

    Google Scholar
     

  • Zhu, C., Nangia, S., Jasper, A. W. & Truhlar, D. G. Coherent switching with decay of mixing: An improved treatment of electronic coherence for non-Born-Oppenheimer trajectories. J. Chem. Phys. 121, 7658–7670 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, D., Xie, Y., Peng, J. & Lan, Z. On-the-fly symmetrical quasi-classical dynamics with meyer-miller mapping hamiltonian for the treatment of nonadiabatic dynamics at conical intersections. J. Chem. Theory Comput. 17, 3267–3279 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Salvat, F., Jablonski, A. & Powell, C. J. Elsepa-“dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Computer Phys. Commun. 165, 157–190 (2005).

    CAS 

    Google Scholar
     

  • Polyak, I., Hutton, L., Crespo-Otero, R., Barbatti, M. & Knowles, P. J. Ultrafast photoinduced dynamics of 1,3-cyclohexadiene using XMS-CASPT2 surface hopping. J. Chem. Theory Comput. 15, 3929–3940 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Medhi, B. & Sarma, M. Deciphering the Internal Conversion Processes Involved in the Photochemical Ring-Opening of 1,3-Cyclohexadiene by Symmetric sp2 -Carbon Substitutions. J. Phys. Chem. A 128, 2025–2037 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, H., Zhang, J., Lan, Z. & Xiang, D. Super-resolution femtosecond electron diffraction reveals electronic and nuclear dynamics at conical intersections https://doi.org/10.5281/zenodo.15501480 (2025).